
On safety in distributed computing

Srivatsan Ravi

On safety in distributed computing



Safety in distributed computing

1 Something ”bad” never happens

2 Some invariant holds at every step in the execution

3 If something bad happens in an execution, it happens because
of some particular step in the execution

On safety in distributed computing



Safety properties

1 A property is a set of histories

2 What does it mean for a set of histories exported by a
concurrent implementation to be safe?

On safety in distributed computing



Defining Safety

1 The Alpern-Schneider topology

2 The Lynch definition

On safety in distributed computing



Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

A property O is finitely observable iff:

∀H ∈ Hinf : H ∈ O ⇒ (∃H ′ ∈ Hfin;H
′ < H ∧ (∀H ′′ ∈ Hinf ;

H ′ < H ′′, H ′′ ∈ O))

1 If O1,O2, . . . ,On are finitely observable, then ∩n
i=1Oi is also

finitely observable

2 The potentially infinite union of finitely observable properties
is also finitely observable.

On safety in distributed computing



Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

A property O is finitely observable iff:

∀H ∈ Hinf : H ∈ O ⇒ (∃H ′ ∈ Hfin;H
′ < H ∧ (∀H ′′ ∈ Hinf ;

H ′ < H ′′, H ′′ ∈ O))

1 If O1,O2, . . . ,On are finitely observable, then ∩n
i=1Oi is also

finitely observable

2 The potentially infinite union of finitely observable properties
is also finitely observable.

The set O of finitely observable properties is a topology on

Hinf

On safety in distributed computing



Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

Safety properties are the closed sets in the topology

A set if closed if its complement is open
A closed set contains all its limit-points

AS-topology defined on the set of infinite histories

Notion of safety not defined for finite histories

On safety in distributed computing



Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

every prefix H ′ of a history H ∈ P is also in P

prefix-closure: an incorrect execution cannot turn into a
correct one in the future

On safety in distributed computing



Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

every prefix H ′ of a history H ∈ P is also in P

prefix-closure: an incorrect execution cannot turn into a
correct one in the future

for any infinite sequence of finite histories H0,H1, . . . such
that for all i , H i ∈ P and H i is a prefix of H i+1, the infinite
history that is the limit of the sequence is also in P.

limit-closure: the infinite limit of an ever-extending safe
execution must be also safe.

On safety in distributed computing



Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

every prefix H ′ of a history H ∈ P is also in P

prefix-closure: an incorrect execution cannot turn into a
correct one in the future

for any infinite sequence of finite histories H0,H1, . . . such
that for all i , H i ∈ P and H i is a prefix of H i+1, the infinite
history that is the limit of the sequence is also in P.

limit-closure: the infinite limit of an ever-extending safe
execution must be also safe.

Sufficient to prove all finite histories are safe

On safety in distributed computing



Proving a property to be safe

Prefix-closure

Constructively from the extended history

Limit-closure

Application of König’s Path Lemma:
If G is an infinite connected finitely branching rooted directed

graph, then G contains an infinite sequence of non-repeating

vertices starting from the root

On safety in distributed computing



Limit-closure

1 A property that is not limit-closed

2 Proving limit-closure of safety properties using König’s Path

Lemma

On safety in distributed computing



Multi-objects

Transactions

Sequence of abortable reads and writes on objects

Transactions can commit by invoking tryC (take effect) or
abort

On safety in distributed computing



Multi-objects

Transactions

Sequence of abortable reads and writes on objects

Transactions can commit by invoking tryC (take effect) or
abort

Opacity

1 History is opaque if there exists an equivalent completion that
is legal and respects the real-time order of transactions.

Totally-order transactions such that every t-read returns the
value of the latest written t-write.

2 Completion by including matching responses to incomplete
t-operations and aborting incomplete transactions

On safety in distributed computing



Opacity and limit-closure

W1(X , 1) TryC1

R2(X ) → 1

Ri (X ) → 0R3(X ) → 0

T1

T2

T3 Ti
→ ∞

1 Mutually overlapping transactions
2 Suppose a serialization S of H exists

There exists n ∈ N; seq(S)[n] = T1

Consider the transaction Ti at index n + 1
For any i ≥ 3, Ti must precede T1 in any serialization

On safety in distributed computing



Opacity and limit-closure

W1(X , 1) TryC1

R2(X ) → 1

Ri (X ) → 0R3(X ) → 0

T1

T2

T3 Ti
→ ∞

1 Consider the set of histories in which every transactional
operation is complete in the infinite history?

2 Is the resulting property limit-closed?

On safety in distributed computing



Opacity and limit-closure: Prelude to the proof

Live set of T

LsetH(T ): T and every transaction T ′ such that neither the last
event of T ′ precedes the first event of T in H nor the last event of
T precedes the first event of T ′ in H.

T ′ succeeds the live set of T (T ≺LS
H T ′) if for all T ′′ ∈ LsetH(T ),

T ′′ is complete and the last event of T ′′ precedes the first event of
T ′.

On safety in distributed computing



Opacity and limit-closure: Prelude to the proof

Live set of T

LsetH(T ): T and every transaction T ′ such that neither the last
event of T ′ precedes the first event of T in H nor the last event of
T precedes the first event of T ′ in H.

T ′ succeeds the live set of T (T ≺LS
H T ′) if for all T ′′ ∈ LsetH(T ),

T ′′ is complete and the last event of T ′′ precedes the first event of
T ′.

Live set: An example

R1(X )

W2(Y , 1)

T1

T2

T1 and T2 overlap

Live set of T1={T1}

T2 succeeds the live set of T1

On safety in distributed computing



Opacity and limit-closure: Prelude to the proof

Live set: An example

R1(X )

W2(Y , 1)

T1

T2

We can find a serialization in which
T1 precedes T2

Given any serialization of a
du-opaque history, permute
transactions without rendering any
t-read illegal.

Lemma

Let H be a finite opaque history and assume Tk ∈ txns(H) be a

complete transaction in H such that every transaction in

LsetH(Tk) is complete in H. Then there exists a serialization S of

H such that for all Tk ,Tm ∈ txns(H); Tk ≺LS
H Tm, we have

Tk <S Tm.

On safety in distributed computing



Opacity and limit-closure: The proof

Step 1: Construction of rooted directed graph GH

Vertices of GH

Root vertex: (H0, S0)
(empty histories)

Non-root vertex: (H i , S i )

S i is a serialization of H i

S i respects live set relation

On safety in distributed computing



Opacity and limit-closure: The proof

Step 1: Construction of rooted directed graph GH

Vertices of GH

Root vertex: (H0, S0)
(empty histories)

Non-root vertex: (H i , S i )

S i is a serialization of H i

S i respects live set relation

Edges of GH

cseqi (S
j); j ≥ i :

subsequence of seq(S j)
reduced to transactions that
are complete in H i w.r.t H

(H i , S i ) → (H i+1, S i+1) if
cseqi (S

i ) = cseqi (S
i+1)

On safety in distributed computing



Opacity and limit-closure: König’s Path Lemma

GH is finitely branching

Out-degree of (H i , S i ) bounded by the number of possible
permutations of the set txns(S i+1).

On safety in distributed computing



Opacity and limit-closure: The proof

Step 2: Application of König’s Path Lemma

If G is an infinite connected finitely branching rooted directed
graph, then G contains an infinite sequence of non-repeating
vertices starting from the root.

GH is finitely
branching

Out-degree of
(H i , S i ) bounded by
the number of
possible
permutations of the
set txns(S i+1).

GH is connected

Given (H i+1, S i+1), ∃ (H i , S i ): seq(S i ) is
subsequence of seq(S i+1)

seq(S i+1) contains every complete
transaction that takes its last step in H in
H i

cseqi (S
i ) = cseqi (S

i+1)

Iteratively construct a path from (H0, S0)
to each (H i , S i )

On safety in distributed computing



Opacity and limit-closure: The proof

Step 2: Application of König’s Path Lemma

GH is an infinite finitely branching connected rooted directed graph

GH is infinite (by construction)

Apply König’s Path Lemma to GH

Derive infinite sequence L of non-repeating vertices of GH

starting from root

On safety in distributed computing



Opacity and limit-closure: The proof

Step 2: Application of König’s Path Lemma

GH is an infinite finitely branching connected rooted directed graph

GH is infinite (by construction)

Apply König’s Path Lemma to GH

Derive infinite sequence L of non-repeating vertices of GH

starting from root

L = (H0, S0), (H1, S1), . . . , (H i , S i ), . . .

↓

In L, ∀j > i : cseqi (S
i ) = cseqi (S

j)

On safety in distributed computing



Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f : N → txns(H) :

f (1) = T0

∀k ∈ N \ {1} : f (k) = cseqi (S
i )[k];i = min{ℓ ∈ N|∀j > ℓ :

cseqℓ(S
ℓ)[k] = cseqj(S

j)[k]}

On safety in distributed computing



Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f : N → txns(H) :

f (1) = T0

∀k ∈ N \ {1} : f (k) = cseqi (S
i )[k];i = min{ℓ ∈ N|∀j > ℓ :

cseqℓ(S
ℓ)[k] = cseqj(S

j)[k]}

⇓

Index of a transaction that is complete w.r.t H is fixed

On safety in distributed computing



Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f is bijective

for every
T ∈ txns(H), ∃k :
f (k) = T

for every k ,m:
f (k) = f (m) ⇒ k =
m

Why?

Suppose
cseqi (S

i ) = [1, 2, . . . , k , . . .]

If last step of Tk in H is in H i , for
all j > i :

cseqj(S
j) = [1, 2, . . . , k , . . .]

Tk remains in the same position
in any extension!

On safety in distributed computing



Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

f is bijective

for every T ∈ txns(H), ∃k : f (k) = T

for every k ,m: f (k) = f (m) ⇒ k = m

⇓

F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of
transactions.

On safety in distributed computing



Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of
transactions.

On safety in distributed computing



Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of
transactions.

And finally,

Constructing S

seq(S) = F

for each t-complete transaction Tk in H, S |k = H|k

each complete Tk , but not t-complete in H,
S |k = H|k · tryAk · Ak

On safety in distributed computing



Opacity and limit-closure: The proof

Step 5: Prove S is a serialization of H

Constructing S

seq(S) = F

for each t-complete transaction Tk in H, S |k = H|k

each complete Tk , but not t-complete in H,
S |k = H|k · tryAk · Ak

S is a serialization of H

S is equivalent to some t-completion of H

Every t-complete prefix of S is a serialization of some
complete subsequence of a prefix of H

S is legal
S respects the real-time order of H
every t-read is legal in corresponding local serialization

On safety in distributed computing



Opacity and safety

1 Under restriction that every transaction issues only finitely
many t-operations and is eventually complete, opacity is a
safety property

2 Take a TM implementation M in which every transactional is
complete in the infinite history. Then, sufficient to prove every
finite history of M is opaque

On safety in distributed computing



Defining safety for infinite histories

W1(X , 1) TryC1

R2(X ) → 1

Ri (X ) → 0R3(X ) → 0

T1

T2

T3 Ti
→ ∞

1 Define an infinite history H to be opaque iff every finite prefix
of H (including H itself if finite) is final-state opaque

2 Prefix-closed and limit-closed by definition

3 But no serialization defined for the infinite history. Does this
matter?

On safety in distributed computing



Linearizability

Data type

1 Specified as Mealy machine

In response to an input, the object makes a transition from one
state to another and responds with an output
Object transitions from one state to another after an operation
specified by the sequential specification

On safety in distributed computing



Linearizability

Data type

1 Specified as Mealy machine

In response to an input, the object makes a transition from one
state to another and responds with an output
Object transitions from one state to another after an operation
specified by the sequential specification

1 A history H is linearizable w.r.t data type τ if there exists a
sequential history equivalent to some completion of H that is
consistent with the sequential specification of τ and respects
the real-time order of operations in H

2 Completion by removing invocations or adding matching
responses

On safety in distributed computing



Linearizability is a safety property

Step 1: Construction of rooted directed graph GH

Vertices of GH

Root vertex: (H0, L0)
(empty histories)

Non-root vertex: (H i , Li )

Li is a linearization of H i

Edges of GH

(H i , Li ) → (H i+1, Li+1) if
cseqi (L

i ) is a subsequence
of cseqi (L

i+1)

On safety in distributed computing



Linearizability is a safety property

Step 2: Application of König’s Path Lemma

GH is finitely branching

Out-degree of (H i , Li ) is finite for
finite types

GH is connected

Iteratively construct a path
from (H0, L0) to each
(H i , Li )

On safety in distributed computing



Linearizability is a safety property

1 Linearizability is prefix-closed

Given linearization L of H, construct a linearization of the
prefix of H by completing incomplete operations as in L

2 For finite, deterministic and total types, linearizability is a
safety property

On safety in distributed computing



Concluding remarks

1 Liveness is defined on infinite histories, so must safety

On safety in distributed computing



Concluding remarks

1 Liveness is defined on infinite histories, so must safety
2 To prove that an implementation I satisfies a safety property

P , sufficient to prove every finite history H exported by I is
contained in P

To need to worry about the correctness of the infinite history

On safety in distributed computing



THANK YOU!

On safety in distributed computing


