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Safety in distributed computing

1 Something ”bad” never happens

2 Some invariant holds at every step in the execution

3 If something bad happens in an execution, it happens because
of some particular step in the execution
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Safety properties

1 A property is a set of histories

2 What does it mean for a set of histories exported by a
concurrent implementation to be safe?
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Defining Safety

1 The Alpern-Schneider topology

2 The Lynch definition
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Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

A property O is finitely observable iff:

∀H ∈ Hinf : H ∈ O ⇒ (∃H ′ ∈ Hfin;H
′ < H ∧ (∀H ′′ ∈ Hinf ;

H ′ < H ′′, H ′′ ∈ O))

1 If O1,O2, . . . ,On are finitely observable, then ∩n
i=1Oi is also

finitely observable

2 The potentially infinite union of finitely observable properties
is also finitely observable.
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Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

A property O is finitely observable iff:

∀H ∈ Hinf : H ∈ O ⇒ (∃H ′ ∈ Hfin;H
′ < H ∧ (∀H ′′ ∈ Hinf ;

H ′ < H ′′, H ′′ ∈ O))

1 If O1,O2, . . . ,On are finitely observable, then ∩n
i=1Oi is also

finitely observable

2 The potentially infinite union of finitely observable properties
is also finitely observable.

The set O of finitely observable properties is a topology on

Hinf
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Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

Safety properties are the closed sets in the topology

A set if closed if its complement is open
A closed set contains all its limit-points

AS-topology defined on the set of infinite histories

Notion of safety not defined for finite histories
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Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

every prefix H ′ of a history H ∈ P is also in P

prefix-closure: an incorrect execution cannot turn into a
correct one in the future
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Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

every prefix H ′ of a history H ∈ P is also in P

prefix-closure: an incorrect execution cannot turn into a
correct one in the future

for any infinite sequence of finite histories H0,H1, . . . such
that for all i , H i ∈ P and H i is a prefix of H i+1, the infinite
history that is the limit of the sequence is also in P.

limit-closure: the infinite limit of an ever-extending safe
execution must be also safe.
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Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

every prefix H ′ of a history H ∈ P is also in P

prefix-closure: an incorrect execution cannot turn into a
correct one in the future

for any infinite sequence of finite histories H0,H1, . . . such
that for all i , H i ∈ P and H i is a prefix of H i+1, the infinite
history that is the limit of the sequence is also in P.

limit-closure: the infinite limit of an ever-extending safe
execution must be also safe.

Sufficient to prove all finite histories are safe
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Proving a property to be safe

Prefix-closure

Constructively from the extended history

Limit-closure

Application of König’s Path Lemma:
If G is an infinite connected finitely branching rooted directed

graph, then G contains an infinite sequence of non-repeating

vertices starting from the root
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Limit-closure

1 A property that is not limit-closed

2 Proving limit-closure of safety properties using König’s Path

Lemma
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Multi-objects

Transactions

Sequence of abortable reads and writes on objects

Transactions can commit by invoking tryC (take effect) or
abort
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Multi-objects

Transactions

Sequence of abortable reads and writes on objects

Transactions can commit by invoking tryC (take effect) or
abort

Opacity

1 History is opaque if there exists an equivalent completion that
is legal and respects the real-time order of transactions.

Totally-order transactions such that every t-read returns the
value of the latest written t-write.

2 Completion by including matching responses to incomplete
t-operations and aborting incomplete transactions
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Opacity and limit-closure

W1(X , 1) TryC1

R2(X ) → 1

Ri (X ) → 0R3(X ) → 0

T1

T2

T3 Ti
→ ∞

1 Mutually overlapping transactions
2 Suppose a serialization S of H exists

There exists n ∈ N; seq(S)[n] = T1

Consider the transaction Ti at index n + 1
For any i ≥ 3, Ti must precede T1 in any serialization
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Opacity and limit-closure

W1(X , 1) TryC1

R2(X ) → 1

Ri (X ) → 0R3(X ) → 0

T1

T2

T3 Ti
→ ∞

1 Consider the set of histories in which every transactional
operation is complete in the infinite history?

2 Is the resulting property limit-closed?
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Opacity and limit-closure: Prelude to the proof

Live set of T

LsetH(T ): T and every transaction T ′ such that neither the last
event of T ′ precedes the first event of T in H nor the last event of
T precedes the first event of T ′ in H.

T ′ succeeds the live set of T (T ≺LS
H T ′) if for all T ′′ ∈ LsetH(T ),

T ′′ is complete and the last event of T ′′ precedes the first event of
T ′.
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Opacity and limit-closure: Prelude to the proof

Live set of T

LsetH(T ): T and every transaction T ′ such that neither the last
event of T ′ precedes the first event of T in H nor the last event of
T precedes the first event of T ′ in H.

T ′ succeeds the live set of T (T ≺LS
H T ′) if for all T ′′ ∈ LsetH(T ),

T ′′ is complete and the last event of T ′′ precedes the first event of
T ′.

Live set: An example

R1(X )

W2(Y , 1)

T1

T2

T1 and T2 overlap

Live set of T1={T1}

T2 succeeds the live set of T1
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Opacity and limit-closure: Prelude to the proof

Live set: An example

R1(X )

W2(Y , 1)

T1

T2

We can find a serialization in which
T1 precedes T2

Given any serialization of a
du-opaque history, permute
transactions without rendering any
t-read illegal.

Lemma

Let H be a finite opaque history and assume Tk ∈ txns(H) be a

complete transaction in H such that every transaction in

LsetH(Tk) is complete in H. Then there exists a serialization S of

H such that for all Tk ,Tm ∈ txns(H); Tk ≺LS
H Tm, we have

Tk <S Tm.
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Opacity and limit-closure: The proof

Step 1: Construction of rooted directed graph GH

Vertices of GH

Root vertex: (H0, S0)
(empty histories)

Non-root vertex: (H i , S i )

S i is a serialization of H i

S i respects live set relation
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Opacity and limit-closure: The proof

Step 1: Construction of rooted directed graph GH

Vertices of GH

Root vertex: (H0, S0)
(empty histories)

Non-root vertex: (H i , S i )

S i is a serialization of H i

S i respects live set relation

Edges of GH

cseqi (S
j); j ≥ i :

subsequence of seq(S j)
reduced to transactions that
are complete in H i w.r.t H

(H i , S i ) → (H i+1, S i+1) if
cseqi (S

i ) = cseqi (S
i+1)
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Opacity and limit-closure: König’s Path Lemma

GH is finitely branching

Out-degree of (H i , S i ) bounded by the number of possible
permutations of the set txns(S i+1).
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Opacity and limit-closure: The proof

Step 2: Application of König’s Path Lemma

If G is an infinite connected finitely branching rooted directed
graph, then G contains an infinite sequence of non-repeating
vertices starting from the root.

GH is finitely
branching

Out-degree of
(H i , S i ) bounded by
the number of
possible
permutations of the
set txns(S i+1).

GH is connected

Given (H i+1, S i+1), ∃ (H i , S i ): seq(S i ) is
subsequence of seq(S i+1)

seq(S i+1) contains every complete
transaction that takes its last step in H in
H i

cseqi (S
i ) = cseqi (S

i+1)

Iteratively construct a path from (H0, S0)
to each (H i , S i )
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Opacity and limit-closure: The proof

Step 2: Application of König’s Path Lemma

GH is an infinite finitely branching connected rooted directed graph

GH is infinite (by construction)

Apply König’s Path Lemma to GH

Derive infinite sequence L of non-repeating vertices of GH

starting from root
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Opacity and limit-closure: The proof

Step 2: Application of König’s Path Lemma

GH is an infinite finitely branching connected rooted directed graph

GH is infinite (by construction)

Apply König’s Path Lemma to GH

Derive infinite sequence L of non-repeating vertices of GH

starting from root

L = (H0, S0), (H1, S1), . . . , (H i , S i ), . . .

↓

In L, ∀j > i : cseqi (S
i ) = cseqi (S

j)
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Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f : N → txns(H) :

f (1) = T0

∀k ∈ N \ {1} : f (k) = cseqi (S
i )[k];i = min{ℓ ∈ N|∀j > ℓ :

cseqℓ(S
ℓ)[k] = cseqj(S

j)[k]}
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Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f : N → txns(H) :

f (1) = T0

∀k ∈ N \ {1} : f (k) = cseqi (S
i )[k];i = min{ℓ ∈ N|∀j > ℓ :

cseqℓ(S
ℓ)[k] = cseqj(S

j)[k]}

⇓

Index of a transaction that is complete w.r.t H is fixed
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Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f is bijective

for every
T ∈ txns(H), ∃k :
f (k) = T

for every k ,m:
f (k) = f (m) ⇒ k =
m

Why?

Suppose
cseqi (S

i ) = [1, 2, . . . , k , . . .]

If last step of Tk in H is in H i , for
all j > i :

cseqj(S
j) = [1, 2, . . . , k , . . .]

Tk remains in the same position
in any extension!
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Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

f is bijective

for every T ∈ txns(H), ∃k : f (k) = T

for every k ,m: f (k) = f (m) ⇒ k = m

⇓

F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of
transactions.
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Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of
transactions.
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Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

F = f (1), f (2), . . . , f (i), . . . is an infinite sequence of
transactions.

And finally,

Constructing S

seq(S) = F

for each t-complete transaction Tk in H, S |k = H|k

each complete Tk , but not t-complete in H,
S |k = H|k · tryAk · Ak
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Opacity and limit-closure: The proof

Step 5: Prove S is a serialization of H

Constructing S

seq(S) = F

for each t-complete transaction Tk in H, S |k = H|k

each complete Tk , but not t-complete in H,
S |k = H|k · tryAk · Ak

S is a serialization of H

S is equivalent to some t-completion of H

Every t-complete prefix of S is a serialization of some
complete subsequence of a prefix of H

S is legal
S respects the real-time order of H
every t-read is legal in corresponding local serialization
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Opacity and safety

1 Under restriction that every transaction issues only finitely
many t-operations and is eventually complete, opacity is a
safety property

2 Take a TM implementation M in which every transactional is
complete in the infinite history. Then, sufficient to prove every
finite history of M is opaque
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Defining safety for infinite histories

W1(X , 1) TryC1

R2(X ) → 1

Ri (X ) → 0R3(X ) → 0

T1

T2

T3 Ti
→ ∞

1 Define an infinite history H to be opaque iff every finite prefix
of H (including H itself if finite) is final-state opaque

2 Prefix-closed and limit-closed by definition

3 But no serialization defined for the infinite history. Does this
matter?
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Linearizability

Data type

1 Specified as Mealy machine

In response to an input, the object makes a transition from one
state to another and responds with an output
Object transitions from one state to another after an operation
specified by the sequential specification
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Linearizability

Data type

1 Specified as Mealy machine

In response to an input, the object makes a transition from one
state to another and responds with an output
Object transitions from one state to another after an operation
specified by the sequential specification

1 A history H is linearizable w.r.t data type τ if there exists a
sequential history equivalent to some completion of H that is
consistent with the sequential specification of τ and respects
the real-time order of operations in H

2 Completion by removing invocations or adding matching
responses
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Linearizability is a safety property

Step 1: Construction of rooted directed graph GH

Vertices of GH

Root vertex: (H0, L0)
(empty histories)

Non-root vertex: (H i , Li )

Li is a linearization of H i

Edges of GH

(H i , Li ) → (H i+1, Li+1) if
cseqi (L

i ) is a subsequence
of cseqi (L

i+1)
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Linearizability is a safety property

Step 2: Application of König’s Path Lemma

GH is finitely branching

Out-degree of (H i , Li ) is finite for
finite types

GH is connected

Iteratively construct a path
from (H0, L0) to each
(H i , Li )
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Linearizability is a safety property

1 Linearizability is prefix-closed

Given linearization L of H, construct a linearization of the
prefix of H by completing incomplete operations as in L

2 For finite, deterministic and total types, linearizability is a
safety property
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Concluding remarks

1 Liveness is defined on infinite histories, so must safety
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Concluding remarks

1 Liveness is defined on infinite histories, so must safety
2 To prove that an implementation I satisfies a safety property

P , sufficient to prove every finite history H exported by I is
contained in P

To need to worry about the correctness of the infinite history
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THANK YOU!
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