On safety in distributed computing

Srivatsan Ravi

On safety in distributed computing



Safety in distributed computing

© Something "bad” never happens
© Some invariant holds at every step in the execution

© If something bad happens in an execution, it happens because
of some particular step in the execution

On safety in distributed computing



Safety properties

@ A property is a set of histories

© What does it mean for a set of histories exported by a
concurrent implementation to be safe?

On safety in distributed computing



Defining Safety

© The Alpern-Schneider topology
@ The Lynch definition

On safety in distributed computing



Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

A property O is finitely observable iff:

VH e Hijpr: He O = (E|H, € Hﬁn;Hl < HA (VH” € Hinf;
H < H", H" € 0))

Q If O1,0,,..., O, are finitely observable, then N7__, O; is also
finitely observable

© The potentially infinite union of finitely observable properties
is also finitely observable.

On safety in distributed computing



Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

A property O is finitely observable iff:

VH e Hijpr: He O = (E|H, € Hﬁn;Hl < HA (VH” € Hinf;
H < H", H" € 0))

Q If O1,0,,..., O, are finitely observable, then N7__, O; is also
finitely observable

© The potentially infinite union of finitely observable properties
is also finitely observable.

The set O of finitely observable properties is a topology on
Hinf

- -

On safety in distributed computing



Defining safety: Alpern-Schneider Topology

Alpern-Schneider Topology

@ Safety properties are the closed sets in the topology

o A set if closed if its complement is open
o A closed set contains all its /imit-points

@ AS-topology defined on the set of infinite histories

@ Notion of safety not defined for finite histories

On safety in distributed computing



Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

@ every prefix H' of a history H € P is also in P

o prefix-closure: an incorrect execution cannot turn into a
correct one in the future

On safety in distributed computing



Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

@ every prefix H' of a history H € P is also in P
o prefix-closure: an incorrect execution cannot turn into a
correct one in the future

@ for any infinite sequence of finite histories H°, H, ... such
that for all i, H' € P and H' is a prefix of H'*1, the infinite
history that is the /imit of the sequence is also in P.

o limit-closure: the infinite limit of an ever-extending safe
execution must be also safe.

On safety in distributed computing



Formal definition of safety

Safety property [Lynch, Distributed Algorithms]

@ every prefix H' of a history H € P is also in P
o prefix-closure: an incorrect execution cannot turn into a
correct one in the future

@ for any infinite sequence of finite histories H°, H, ... such
that for all i, H' € P and H' is a prefix of H'*1, the infinite
history that is the /imit of the sequence is also in P.

o limit-closure: the infinite limit of an ever-extending safe
execution must be also safe.

Sufficient to prove all finite histories are safe

On safety in distributed computing



Proving a property to be safe

Prefix-closure

Constructively from the extended history

Application of Konig's Path Lemma:
If G is an infinite connected finitely branching rooted directed
graph, then G contains an infinite sequence of non-repeating
vertices starting from the root

On safety in distributed computing



Limit-closure

© A property that is not limit-closed

@ Proving limit-closure of safety properties using Konig's Path
Lemma

On safety in distributed computing



Multi-objects

Transactions

@ Sequence of abortable reads and writes on objects

@ Transactions can commit by invoking tryC (take effect) or
abort

On safety in distributed computing



Multi-objects

Transactions

@ Sequence of abortable reads and writes on objects

@ Transactions can commit by invoking tryC (take effect) or
abort

Opacity
© History is opaque if there exists an equivalent completion that

is legal and respects the real-time order of transactions.

o Totally-order transactions such that every t-read returns the
value of the latest written t-write.

@ Completion by including matching responses to incomplete
t-operations and aborting incomplete transactions

On safety in distributed computing



Opacity and limit-closure

Wi, 1) Ty

Tyt t -

@ Mutually overlapping transactions
© Suppose a serialization S of H exists

o There exists n € N; seq(S)[n] = T1
@ Consider the transaction T; at index n+1
@ For any i > 3, T; must precede T in any serialization

On safety in distributed computing



Opacity and limit-closure

WX, 1), | TryCy

© Consider the set of histories in which every transactional
operation is complete in the infinite history?

© s the resulting property limit-closed?

On safety in distributed computing



Opacity and limit-closure: Prelude to the proof

Live set of T

Lsety(T): T and every transaction T’ such that neither the last
event of T’ precedes the first event of T in H nor the last event of
T precedes the first event of T’ in H.

T’ succeeds the live set of T (T <L> T') if for all T € Lsety(T),

T" is complete and the last event of T” precedes the first event of
T.

On safety in distributed computing



Opacity and limit-closure: Prelude to the proof

Live set of T

Lsety(T): T and every transaction T’ such that neither the last
event of T’ precedes the first event of T in H nor the last event of
T precedes the first event of T’ in H.

T’ succeeds the live set of T (T <L> T') if for all T € Lsety(T),

T" is complete and the last event of T” precedes the first event of
T.

~

Live set: An example @ T7 and T; overlap
Ri(X) o Live set of Ty={T1}
—

@ T, succeeds the live set of Ty

1

Wo(Y, 1)
2

On safety in distributed computing



Opacity and limit-closure: Prelude to the proof

Live set: An example We can find a serialization in which
T1 precedes Ty
I Given any serialization of a
Wa(Y, 1) du-opaque history, permute
T2 — transactions without rendering any
t-read illegal.

Let H be a finite opaque history and assume T € txns(H) be a
complete transaction in H such that every transaction in
Lsety(Ty) is complete in H. Then there exists a serialization S of
H such that for all Ty, Tp, € txns(H); Tk -<f_,5 T,,, we have

Tk <s Tn.

On safety in distributed computing



Opacity and limit-closure: The proof

Step 1: Construction of rooted directed graph Gy

@ Root vertex: (H, S%)
(empty histories)
@ Non-root vertex: (H', S')

@ S' is a serialization of H'

@ S' respects live set relation

On safety in distributed computing



Opacity and limit-closure: The proof

Step 1: Construction of rooted directed graph Gy

Edes of G

@ Root vertex: (H°, S°) o cseq;(S); j > i:
(empty histories) subsequence of seq(S’)
@ Non-root vertex: (H',S") reduced to transactions that

are complete in H w.r.t H
o (H,S") — (H'*L, Sty if
cseq;(S') = cseq;(S™T)

@ S'is a serialization of H'

@ S' respects live set relation

On safety in distributed computing



Opacity and limit-closure: Konig's Path Lemma

Gy is finitely branching

Out-degree of (H', S") bounded by the number of possible
permutations of the set txns(S+1).

On safety in distributed computing



Opacity and limit-closure: The proof

Step 2: Application of Kénig’'s Path Lemma

If G is an infinite connected finitely branching rooted directed
graph, then G contains an infinite sequence of non-repeating
vertices starting from the root.

T
branching o Given (H'*1,S'*1) 3 (H' S™): seq(S') is
Out-degree of subsequence of seq(S'*1)

(H',S") bounded by o seq(S™*1) contains every complete

the r_lumber of transaction that takes its last step in H in
possible Hi

ermutations of the . .

permutation o cseq;(S") = cseq;(S™tY)

set txns(S1).
: @ lteratively construct a path from (H?, S%)
to each (H',S")

ot

On safety in distributed computing



Opacity and limit-closure: The proof

Step 2: Application of Konig's Path Lemma

Gy is an infinite finitely branching connected rooted directed graph

@ Gy is infinite (by construction)
o Apply Konig's Path Lemma to Gy

@ Derive infinite sequence £ of non-repeating vertices of Gy
starting from root

On safety in distributed computing



Opacity and limit-closure: The proof

Step 2: Application of Kénig’'s Path Lemma

Gy is an infinite finitely branching connected rooted directed graph
@ Gy is infinite (by construction)

@ Apply Konig's Path Lemma to Gy

o Derive infinite sequence £ of non-repeating vertices of Gy
starting from root

L= (H S0, (HY,SY),... . (H,S)),...

In £, Vj>i:cseq(S") = cseqi(S/)

On safety in distributed computing



Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f:N— txns(H) :

Vk € N\ {1} : f(k) = cseq;(S")[K];i = min{¢ € N|Vj > {:
cseqy(S*)[k] = cseq;(S)[K]}

On safety in distributed computing



Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

f:N— txns(H) :

Vk € N\ {1} : f(k) = cseq;(S")[k];i = min{¢ € N|Vj > £ :
cseqy(S*)[k] = cseq;(S7)[k]}

I

Index of a transaction that is complete w.r.t H is fixed

On safety in distributed computing



Opacity and limit-closure: The proof

Step 3: Define a bijective mapping from txns(H) to N

o for every @ Suppose
T € txns(H), Jk: cseqi(S) =[1,2,...,k,...]
f(k)=T o If last step of Ty in H is in H', for

o for every k, m: all j > i: .
f(k)=f(m)= k= o cseqi(S) =[1,2,...,k,.. ]

@ T, remains in the same position
in any extension!

m

On safety in distributed computing



Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

f is bijective
o forevery T € txns(H), 3k: f(k)=T
o for every k,m: f(k) =f(m)= k=m

4

F =1(1),f(2),...,f(i),...is an infinite sequence of
transactions.

On safety in distributed computing



Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

F =1(1),f(2),...,f(i),... is an infinite sequence of
transactions.

On safety in distributed computing



Opacity and limit-closure: The proof

Step 4: Construct a serialization S of H from f

F =1(1),f(2),...,f(i),...is an infinite sequence of
transactions.

And finally,

Constructing S

® seq(S) =F
o for each t-complete transaction Ty in H, S|k = H|k

@ each complete Ty, but not t-complete in H,
5|k = H|k - tryAy - Ag

On safety in distributed computing



Opacity and limit-closure: The proof
Step 5: Prove S is a serialization of H

° seq(S)=F
o for each t-complete transaction Ty in H, S|k = H|k

@ each complete Ty, but not t-complete in H,
S|k = H|k - tryAy - Ag

o
S is a serialization of H

@ S is equivalent to some t-completion of H

@ Every t-complete prefix of S is a serialization of some
complete subsequence of a prefix of H
o S is legal
@ S respects the real-time order of H
o every t-read is legal in corresponding local serialization

- -

On safety in distributed computing




Opacity and safety

© Under restriction that every transaction issues only finitely
many t-operations and is eventually complete, opacity is a
safety property

© Take a TM implementation M in which every transactional is
complete in the infinite history. Then, sufficient to prove every
finite history of M is opaque

On safety in distributed computing



Defining safety for infinite histories

Wi, 1) ) Ty

@ Define an infinite history H to be opaque iff every finite prefix
of H (including H itself if finite) is final-state opaque

@ Prefix-closed and limit-closed by definition

© But no serialization defined for the infinite history. Does this
matter?

On safety in distributed computing



Linearizability

Data type

© Specified as Mealy machine
o In response to an input, the object makes a transition from one
state to another and responds with an output
@ Object transitions from one state to another after an operation
specified by the sequential specification

On safety in distributed computing



Linearizability

Data type

© Specified as Mealy machine

o In response to an input, the object makes a transition from one
state to another and responds with an output

@ Object transitions from one state to another after an operation
specified by the sequential specification

@ A history H is linearizable w.r.t data type 7 if there exists a
sequential history equivalent to some completion of H that is
consistent with the sequential specification of T and respects
the real-time order of operations in H

@ Completion by removing invocations or adding matching
responses

On safety in distributed computing



Linearizability is a safety property

Step 1: Construction of rooted directed graph Gy

Vertices of Gy Edges of Gy
@ Root vertex: (HO, L°) o (H', Ly — (KT Li*1yif
(empty histories) cseq;(L') is a subsequence
@ Non-root vertex: (H', L") of cseq;(L'*1)

o L is a linearization of H'

On safety in distributed computing



Linearizability is a safety property

Step 2: Application of Konig’'s Path Lemma

Gy is finitely branching Gy is connected
Out-degree of (H', L) is finite for @ lteratively construct a path
finite types from (H?, L°) to each

(H', L)

On safety in distributed computing



Linearizability is a safety property

© Linearizability is prefix-closed

o Given linearization L of H, construct a linearization of the
prefix of H by completing incomplete operations as in L

@ For finite, deterministic and total types, linearizability is a
safety property

On safety in distributed computing



Concluding remarks

© Liveness is defined on infinite histories, so must safety

On safety in distributed computing



Concluding remarks

© Liveness is defined on infinite histories, so must safety
© To prove that an implementation / satisfies a safety property
P, sufficient to prove every finite history H exported by / is
contained in P
o To need to worry about the correctness of the infinite history

On safety in distributed computing



THANK YOU!

On safety in distributed computing



