
Self-stabilizing and Self-optimizing

Distributed Data Structures

1

Stefan Schmid (TU Berlin & T-Labs)

Collaborators:

Riko Jacob, Andrea Richa,

Christian Scheideler, Hanjo Täubig, …

Self-stabilizing and Self-optimizing

Distributed Data Structures

2

Stefan Schmid (TU Berlin & T-Labs)

Collaborators:

Riko Jacob, Andrea Richa,

Christian Scheideler, Hanjo Täubig, …

Bremen Stadtmusikanten On A Windy Evening

3 Stefan Schmid (T-Labs)

© Shlomi’s book

4 Stefan Schmid (T-Labs)

Page 4

Page 22

Page 1

Requirements:

 - Play “happy birthday” again and again

 - Wind changes pages without players knowing!

 - When wind stops, harmonize eventually!

Bremen Stadtmusikanten On A Windy Evening

5 Stefan Schmid (T-Labs)

Page 4

Page 22

Page 1

Bremen Stadtmusikanten On A Windy Evening

How to achieve?

 Idea 1: If out of sync, just change to the page of a nearby player!

 But what if the neighbor does the same? Do not know who was right! May never converge…

 Idea 2: Go to start when asynchrony detected!

 But players further away detect it later and restart later! May never converge…

6 Stefan Schmid (T-Labs)

Page 4

Page 22

Page 1

Bremen Stadtmusikanten On A Windy Evening

How to achieve?

 Idea 1: If out of sync, just change to the page of a nearby player!

 But what if the neighbor does the same? Do not know who was right! May never converge…

 Idea 2: Go to start when asynchrony detected!

 But players further away detect it later and restart later! May never converge…

What about synchronizing to the neighbor
with the smallest page number?

What about…?

We need a “self-stabilizing algorithm”!

7 Stefan Schmid (T-Labs)

A Historical Note

Self-stabilizing algorithms
pioneered by Dijkstra (1973): for
example self-stabilizing mutual
exclusion.

“I regard this as Dijkstra’s most
brilliant work. Self-stabilization is a
very important concept in fault
tolerance.”

Leslie Lamport (PODC 1983)

This Talk: Topological Self-Stabilization

8 Stefan Schmid (T-Labs)

From chaos to order: self-stabilizing distributed datastructure (e.g., p2p)

failures,
adversary,
attack, …

adversary stops

 FIB: Forwarding
Information Base

 FIB consists of

 set of <prefix, next-
hop>

t0 t0+D

desired structure

 FIB: Forwarding
Information Base

 FIB consists of

 set of <prefix, next-
hop>

Formal View

9 Stefan Schmid (T-Labs)

Example: Hypercube (log+log)

failures,
adversary,
attack, …

weakly connected

 FIB: Forwarding
Information Base

 FIB consists of

 set of <prefix, next-
hop>

t0 t0+D

stabilized
hypercube

 FIB:
Forwarding
Information
Base

 FIB consists
of

 set of
<prefix,
next-
hop>

001 000

100

011

111 110

101

010

001 000

100

011

111 110

101

010

001 000

100

011

111 110

101

010

10 Stefan Schmid (T-Labs)

failures,
adversary,
attack, …

weakly connected

t0 t0+D

001 000

100

011

111 110

101

010

001 000

100

011

111 110

101

010

001 000

100

011

111 110

101

010

How?

How:

 Distributed: local algorithm

 Fast: minimize D, and stay there!

stabilized
hypercube

 FIB:
Forwarding
Information
Base

 FIB consists
of

 set of
<prefix,
next-
hop>

Formal View

Example: Hypercube (log+log)

Model & Terminology

11 Stefan Schmid (T-Labs)

Configuration

001 000

100

011

111 110

101

010

 Constants: identifiers

 Variables: neighborhoods
(set of identifiers)

 Union over all nodes

Execution

001 000

100

011

111 110

101

010

 Scheduler: execute enabled actions

 Gives next configuration

 In parallel, or “scalably”

Rules

 Condition: on local state

 Action: propose new link in
neighborhood

 Careful: stay connected!

001

101

111

001

101

111

001 000

100

011

111 110

101

010

Self-Stabilization

 Convergence: eventually we end up
in desired configuration

 Closure: once there, stays there

Performance Metrics

12 Stefan Schmid (T-Labs)

Parallel Time complexity

weakly connected

t0 t0+D

stabilized

001 000

100

011

111 110

101

010

001 000

100

011

111 110

101

010

 Number of parallel rounds until stabilization in the worst case

 Depends on scheduler (scalable: only constant number of enabled actions per node)

Work

 Number of changed edges

Input-sensitive

 Local repairs and joins/leaves

Local Algorithms (LOCAL Model)

13 Stefan Schmid (T-Labs)

... receive...

Send...

... compute.

Talk Overview

14 Stefan Schmid (T-Labs)

 Primo Piatto: Linearization

 Main Dish: The Skip+ Graph

 Dessert: Delaunay Graphs & Co.

 Digestive: From Self-Stabilization to Self-Optimization

Linearization

15 Stefan Schmid (T-Labs)

Input: Weakly Connected Graph

Output: Sorted Network (wrt IDs!)

2 1 4 3 6 5 8 7

2 1 4 3 6 5 8 7

How? Local neighborhood changes only

 Preserve connectivity

 Once there, stay there

A First Insight: Local Checkability

16
Stefan Schmid (T-Labs)

Basic requirement:

At least one node must observe (and continue changing)!

Local checkability:

2 1 4 3 6 5 8 7

Yes! Yes! Yes! Yes! No! No! No! No!

Yes!

Yes! No!

Yes!

F() = No!

Most Simple Undirected Linearization

17 Stefan Schmid (T-Labs)

Linearize left (x<y<z): Linearize right (x<y<z):

y x z

Correctness:

Complexity?

y x z

y x z

y x z

 Connectivity preserved: paths via missing edge still exist

 Closure: no changes in linearized setting

 Convergence:

 Triple always exists if not linearized

 Firing triple reduces potential: Φ = Σ len(e), edges get shorter

Types of Schedulers

18 Stefan Schmid (T-Labs)

The FULL Scheduler: full set of triples okay

Only maximal independent set (MIS Scheduler):

2 1 4 3 6 5

Triple 1

7

Problem: many changes at single node (e.g., two new edges at node 2, but up to n-1)

8

Triple 2

Triple 3

enabled triples

affected

not affected

2 1 4 3 6 5

Triple 1

7 8

Triple 2
Each node involved in at
most one triple!

Concrete MIS Schedulers (Hypothetical!)

19 Stefan Schmid (T-Labs)

Worst / Best Case MIS Scheduler

 Worst/best sets of MIS triples such that
complexity max/minimized

Random MIS Scheduler

 Random MIS triples

Greedy MIS Scheduler

 E.g., select highest (remaining) degree

node first (“least linearized guy”)

 And for this node, fire triple with most
remote neighbors on side with higher
degree (“most progress”)

3 2 5 4 7 6

Triple 1

8 9

Triple 2

1

highest degree
furthest neighbors

The Algorithm LIN-MAX

20 Stefan Schmid (T-Labs)

The LIN-MAX Algorithm: each node proposes furthest triple on each side

2 1 4 3 6 5

Triple 1

7

Triple 2

Under a greedy MIS scheduler, LIN-MAX
has a time complexity of O(n log n).

Analysis LIN-MAX

21 Stefan Schmid (T-Labs)

Under a greedy MIS scheduler, LIN-MAX
has a time complexity of O(n log n).

Proof
 Consider potential function Φ = Σ len(e).

 Clearly, initially Φ < O(n3), each edge at most n long,
and when fully linearized, Φ = O(n).

 We show: in each round where triple still exists,
potential is multiplied by factor 1- Ω(1/n)

 When triple right-linearized by x, Φ reduced by at least
dist(x,z)-dist(y,z)=dist(x,y)

 Due to greedy degree scheduling, and since LIN-MAX
takes furthest neighbors: dist(x,y) >= deg(x)/2-1 >=
deg(x)/4.

 Due to this triple, how many other triples cannot be fired
in this round (“blocked potential”): overall potential at
most O(n)*deg(x). So we reduce a 1/n fraction of the
total potential. QED.

y x z

y x z

Blocked Potential

22 Stefan Schmid (T-Labs)

 “Due to the triple (x,y,z), at most O(n)*deg(x) remaining
potential is blocked.”

x

Triple

y

highest degree
furthest neighbors

blocked

edge

blocked

edge

blocked
edge

blocked
z

 Look at remaining components and neighbors w of x, y, or z

 Case A: if remaining component is line, cannot linearize further in this step, but
line has blocked potential n, plus potential for edge to w (at most n as well)

 Case B: if remaining component still has triples that can fire in this round, account
for them later. But lose edge to w (potential n).

 Since max(deg(y), deg(z)) =< deg(x), max 6 deg(x) neighbors on both sides

 So we block at most 6*deg(x) edges and components of potential 2n.

w w

blocked line

not blocked:
do later in
this round!

w w w

A Lower Bound

23 Stefan Schmid (T-Labs)

Even under an optimal MIS scheduler,
LIN-MAX has a time complexity of Ω(n).

Proof
 e

Length of edge e is reduced by one only
per round: no parallelism.

QED

A Better Lower Bound

24 Stefan Schmid (T-Labs)

Under worst scheduler, time Ω(n2) for
LIN-MAX algorithm.

QED

Initially complete
bipartite graph.

Talk Overview

25 Stefan Schmid (T-Labs)

 Primo Piatto: Linearization

 Main Dish: The Skip+ Graph

 Desert: Delaunay Graphs & Co.

 Digestive: from Self-Stabilization to Self-Optimization

Skip Graphs

26

 Attractive distributed data structure: logarithmic height, logarithmic degree

 Distributed variant of skip list…: connect to nearest neighbors on log(n) many levels

 Nodes v have identifier v.id and random string v.rs

 Nodes sorted according to v.id (range search), and organized in layers according to v.rs

a c e m n o r s u v w x z

e m n v z

a c o r s u w x

e m n

v z

a

c

o

r s u

w x

0

1

00

01

10

11

Skip+ Motivation: Local Checkability

 For fast self-stabilization, we use a different variant of the Skip graph

 Additional edges for (1) local checkability and (2) efficiency

Problem: The following graph looks “locally correct”!

 Such a Skip graph does not work: node a only has two neighbors c (on level 0) and u (on level 1)

 But neither a, c, or u are aware of n: the graph looks correct locally: everyone has its nearest neighbors!

27 Stefan Schmid (T-Labs)

Skip+: Solution By Additional Edges

28

 Add additional edges to all nodes on this level, until nearest neighbor of the prefix

 Node c can now realize that u is not a nearest neighbor of a, and tell it to a!

Stefan Schmid (T-Labs)

Definition of Skip+

29

In words: a white node is interested in all nodes until first black node (inclusive); if white node
does not have white neighbor yet on that side, it is interested in all black nodes until white again
(exclusive).

Define predecessors and
successors on each level

Define ranges in which nodes are
interested on a level i: all up to end
of opposite color

range(e,i)

range(n,i)

Stefan Schmid (T-Labs)

Properties of Skip+

30

The diameter and degree of Skip+ is
O(log n), w.h.p.

 The height and diameter is not larger than in the original Skip graph

 Interestingly, also the degree does not increase asymptotically

 Probability that there are k neighbors on level i: 2-k

 Union bound over all possible distributions of degrees over levels:

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

31

Principles

 Never delete any edges! Only forward or merge
with existing ones (preserves connectivity)

 Four simple rules: all executed at all times

 No phase changes (“first clique, then…”: not self-
stabilizing)

 But analysis in phases okay!

 Preprocessing / transition step between rules:
make things bi-directed, etc.

 Do not introduce unnecessary edges (degree!)

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

32

Pre-Processing / Transition

 Receive requests

 Make links bi-directed and send state / neighborhood

2 1

3

4

2 1

3

4

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

33

Rule 1: Range Reduction
 Distinguish: stable and temporary neighbor

 Stable = out-neighbor in-range on some level i; temporary = not

 Note: in-range at level i implies in-range at level j>i (if prefix still fits: on
higher levels less nodes as more prefix bits required)

 For every level i, for any stable vЄN(u) and pfx-i (v)=pfx-i(w) and v interested
in w, u requests new stable (v,w), plus if also stable: (w,v)

u v w

ρ0

le
v
e
l
i

u

v w

w Є range(v,i)

Rule 1 ensures a fast “pointer doubling” until first interesting nodes are
found! (Initially: unbounded ranges!)

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

34

Rule 2: Forward Edges

 Node u forwards non-interesting / temporary edge to (u,v) to the
stable neighbor with the largest common prefix with v

 W must exist, otherwise (u,v) would be stable

v

le
v
e
l

i

u
v

range(u)

u

w v

range(u)

j

w

Rule 2 used to quickly propagate edges to nodes where they are more
useful (otherwise vanish / merge)

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

35

Rule 3: Local Closure («intro all»)

 Whenever the stable neighborhood of a node u changes, e.g., even if
only the level at which some edge is stable, u introduces edges
between all its neighbors

v
x

u x

w

Rule 3 quickly propagates new edges in neighborhood and ensures
that already connected components stay connected in future.

Stefan Schmid (T-Labs)

Distributed Self-Stabilization: Algorithm ALG+

36

Rule 4: Linearize

 Every node u on every level i: for all stable neighbors, link neighbors
according to order of identifier ID (not random string rs!)

Rule 4 sorts nodes according identifiers: gives desired search structure.

w v

u

x

u

Stefan Schmid (T-Labs)

Proof Overview (1)

37

 Think in “phases”!

 Bottom-up phase (time log2 n)

 From layer 0 upward, Gρ components arise:

 Trivial for empty prefix (connected)

 Induction: each node with ρ0 finds buddy: node of opposite color
ρ1 on same level | ρ |.

 Given a buddy and connected Vρ, we quickly get connected
graphs Gρ0 and Gρ1.

Gρ= (Vρ, Eρ) where Vρ is set of nodes with prefix ρ and Eρ are
edges between Vρ nodes.

ρ0

ρ1 ρ
powered
by Rule 1
and Rule 3

Gρ

Gρ0 Gρ1

Stefan Schmid (T-Labs)

Proof Overview (1)

 Think in “phases”!

 Top-down phase (time log n)

 From level H downward

 Level i contains all edges of Gρ (stable “little Skip graph”)

 Level H trivial: single nodes

 Then, by Rule 1, two i-finished components zip together to (i-1)-
finished component

Gρ0 Gρ1

Gρ

Gρ

Gρ0 Gρ1

O(1)

Stefan Schmid (T-Labs)

Bottom-Up Phase (1)

39

 Lemma: If weakly connected at t0, nodes will have buddy at
t0+O(log n) w.h.p.

 By Rule 1 (pointer doubling until in-range node!)

 Concept of pre-component / pre-connected:

(σ,k)-pre-component

Nodes a, b with prefix σ=ρx but in different Gσ components are
(σ,k)-pre-connected if (1) Gρ is weakly connected, (2) every node in
Gρ0 and Gρ1 has at least one neighbor in the opposite component,
(3) a and b are either directly connected, σ-V-linked, or if there
exists a stable (σ,k’)-bridge with k’=<k.

Shaded nodes are

(ρ0,k)-pre-component:

bridge

V-linked

Bottom-Up Phase (2)

 Lemma: Once pre-connected, stays pre-connected.

 Lemma: If in (σ,k)-pre-component at t, σ-connected at t+4.

 Mostly due to Rule 1 and 3

 Lemma: Evolution of bridges

 The level of temporary bridge edge grows
quickly: endpoints share larger prefix in
each round (Forwarding Rule 2 plus
existence of buddy)

 Then, bridge edge stabilizes, and can
serve for forwarding as well.

 This yields new stable bridges at lower
levels.

 Lemma: Once Gρ connected at time t,

Gρ0 and Gρ1 also connected at time
t+O(log n).

 So summing over all levels: O(log2 n).

Stefan Schmid (T-Labs)

Other Features of Skip+

41

Individual joins/leaves can be handled
locally, with polylog work.

Stefan Schmid (T-Labs)

Talk Overview

42 Stefan Schmid (T-Labs)

 Primo Piatto: Linearization

 Main Dish: The Skip+ Graph

 Desert: Delaunay Graphs & Co.

 Digestive: from Self-Stabilization to Self-Optimization

Delaunay Graphs

43 Stefan Schmid (T-Labs)

There exists a self-stabilizing algorithm
for Delaunay graph with time complexity
of O(n3).

Idea
 More geometric

 Always compute local Delaunay graph of (outgoing) neighbors plus “local hull”: stable edges

 Greedily route temporary edges towards node closest to edge destination (“distance compass
routing”): maintain connectivity

Talk Overview

44 Stefan Schmid (T-Labs)

 Primo Piatto: Linearization

 Main Dish: The Skip+ Graph

 Desert: Delaunay Graphs & Co.

 Digestive: from Self-Stabilization to Self-Optimization

From “Optimal” Networks to Self-Adjusting Networks

45

 Networks become more and more dynamic (e.g., flexible SDN control)

 Vision: go beyond classic “optimal” static networks

 Example: Peer-to-peer

Chord, Pastry, SHELL Koorde, ... Pancake

 Hypercubic
 Log diameter
 Log degree
 Log routing

 Constant degree
 Log routing

 Log/loglog degree and
 log/loglog routing

Stefan Schmid (T-Labs)

From “Optimal” Networks to Self-Adjusting Networks

46

 Networks become more and more dynamic (e.g., flexible SDN control)

 Vision: go beyond classic “optimal” static networks

 Example: Peer-to-peer

Chord, Pastry, SHELL Koorde, ... Pancake

 Hypercubic
 Log diameter
 Log degree
 Log routing

 Constant degree
 Log routing

 Log/loglog degree and
 log/loglog routing

What if networks could self-adjust depending

on communication pattern?

Stefan Schmid (T-Labs)

An Old Concept: Move-to-front, Splay Trees, …

47

 Classic data structures: lists, trees

 Linked list: move frequently accessed elements to front!

 Trees: move frequently accessed elements closer to root

Stefan Schmid (T-Labs)

An Old Concept: Move-to-front, Splay Trees, …

48

 Classic data structures: lists, trees

 Linked list: move frequently accessed elements to front!

 Trees: move frequently accessed elements closer to root

Stefan Schmid (T-Labs)

An Old Concept: Move-to-front, Splay Trees, …

49

 Classic data structures: lists, trees

 Linked list: move frequently accessed elements to front!

 Trees: move frequently accessed elements closer to root

Stefan Schmid (T-Labs)

Splay Trees!

The Vision: Splay Networks (“Distributed Splay Trees”)

50

 Most simple self-adjusting tree network: Binary Search Tree (BST)

Stefan Schmid (T-Labs)

The Vision: Splay Networks (“Distributed Splay Trees”)

51

 Most simple self-adjusting tree network: Binary Search Tree (BST)

Stefan Schmid (T-Labs)

The Vision: Splay Networks (“Distributed Splay Trees”)

52

 Most simple self-adjusting tree network: Binary Search Tree (BST)

Stefan Schmid (T-Labs)

Communication between peer pairs!

(Not only lookups from root…)

The Vision: Splay Networks (“Distributed Splay Trees”)

53

 Most simple self-adjusting tree network: Binary Search Tree (BST)

Stefan Schmid (T-Labs)

Why BST?!
- Most simple generalization of

classic data structure
- Allows for local routing!
- Allows for algebraic gossip

Model: Self-Adjusting SplayNets

54

Input:

 communication pattern:

 (static or dynamic) graph

Stefan Schmid (T-Labs)

Output:

 sequence of network adjustments

Cost metric:

 expected path length

 # (local) network updates

“Host Graph”

“Guest Graph”

The Optimal Offline Solution

55 Stefan Schmid (T-Labs)

Dynamic program

 Binary search:

 decouple left from right!

 Polynomial time

 (unlike MLA!)

 So: solved M”BST”A

See also:

 Related problem of

 phylogenetic trees

OPT

OPT OPT

The Online SplayNets Algorithm

56

From Splay tree to SplayNet:

The Online SplayNets Algorithm

57

From Splay tree to SplayNet:

The Online SplayNets Algorithm

58

From Splay tree to SplayNet:

Least Common

Ancestor

Local rotations!

Analysis: Basic Lower and Upper Bounds

59 Stefan Schmid (T-Labs)

Adaption of Tarjan&Sleator

A-Cost < H(X) + H(Y)

Upper Bound

where H(X) and H(Y) are
empirical entropies of sources
resp. destinations

A-Cost > H(X|Y) + H(Y|X)

Lower Bound

where H(|) are conditional
entropies.

Assuming that each node is
the root for “its tree”

Therefore, our algorithm is optimal, e.g., if communication pattern
describes a product distribution!

Properties: Convergence

60 Stefan Schmid (T-Labs)

Nodes communicate within local
clusters only!

Over time, nodes will form
clusters in BST! No paths
“outside”.

Cluster scenario:

IDs

Properties: Optimal Solutions

61 Stefan Schmid (T-Labs)

Will converge to optimum:
Amortized costs 1.

Laminated scenario:

IDs

Will converge to optimum:
Amortized costs 1.

Non-crossing matching (= “no
polygamy”) scenario:

IDs

Properties: Optimal Solutions

62 Stefan Schmid (T-Labs)

Multicast scenario (BST): Example

Invariant over “stable” subtrees
(from right):

Improved Lower Bounds (and More Optimality)

63 Stefan Schmid (T-Labs)

Cut of interval: entropy
yields amortized costs!

Via interval cuts or conductance entropy:

IDs

Grid:

Simulation Results

64 Stefan Schmid (T-Labs)

 Facebook component with 63k nodes and 800k edges

 SplayNet exploit random walk locality, to less extent also matching

Multiple BSTs: OBST

65 Stefan Schmid (T-Labs)

 Static:

 Not much help for lookup model

 Much help for routing model!

 Dynamic: yes

Conclusion

66 Stefan Schmid (T-Labs)

 Topological self-stabilization

 Linearization, Skip Graph, Delaunay

 Take-home messages: local checkability, only one single phase possible,
compute “local” version but ensure connectivity, …

 Self-optimization

 Beating the lower bounds

 First look into trees

 Related to entropy

 Papers: PODC 2009, ISAAC 2009, LATIN 2010, IPDPS 2013, P2P 2013, etc.

Thank you! Questions?

