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Introduction




The Model

Read/ Write l Share d

n asynchronous processes.
At most n—1 processes can crash.
Wait-free algorithms: each nonfaulty process produces an output.

Full information.




lterated Atomic Snapshot

* Execution induced by a sequence of blocks:
* Write together;
® Read together.

® Fresh copy of the memory every time.

o Implemented in 0(n?) overhead [Borowsky and Gafni 97].
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Comparison Based Algorithms

Processes only compare their identifiers.

Execution by Py, P,, P; looks like execution by Py, P,, P, .
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M-Renaming
[Attiya et al. 90]

Nl processes Outputs: 1,...,M
With identifiers Unique values

@ Processes are only allowed to compare their identifiers
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Weak Symmetry Breaking (WSB)
[Gatni et al. 06]
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1 processes Outputs: 0/1 |
With identifiers If all output: not all the same
Equivalent to (2n-2)-renaming
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M-Renaming Bounds
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[Attiya et al. 90] Several Papers [Attiya et al. 90]




M-Renaming Bounds

[Castaneda and Rajsbaum 10]: Lower bounds are wrong.

M| 1,...,n ntl,... 2n-2 2n-1,...
0 WSB
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Renaming Bounds

[Castaneda and Rajsbaum 10]: Lower bounds are wrong.

Existential proof .

No bounds on steps complexity.




Our Results

n-process algorithm for WSB and (271 — 2)-renaming,

when n is not a prime power.

Bounded step complexity: 0, (TLQ+5) :

where g is the largest prime power dividing n.




Topology & Distributed Computing




Simplexes

Sets of objects.

Represented as convex hulls of points.
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Simplicial Complexes

o “Gluings” of simplexes.

* Some complexes are called subdivisions of others.




Topology & Distributed Computing

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99];
[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

° Simplicial Complexes represent states of the system.




Topology & Distributed Computing

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99];
[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

° Simplicial Complexes represent states of the system.

* Colored.




Topology & Distributed Computing

® An execution.




Topology & Distributed Computing

An execution.

{aHal {8} [a}{a}

All 1-step interleaving.
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Subdivision Implies Algorithm

® Simplicial approximation: processes converge on a simplex.




Subdivision Implies Algorithm
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Subdivision Implies Algorithm

e Execution: -[,g]- -[E]- {m}




Subdivision Implies Algorithm
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Subdivision Implies Algorithm
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Subdivision Implies Algorithm
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Subdivision Implies Algorithm
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* Execution:




Outputs

Each vertex has double coloring:

® Process id

A )
® ®

* Output value
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Subdivision Implies Algorithm

° Simplicial approximation




Chromatic Subdivisions

® Chromatic subdivision: can assign a process to each vertex.

* An algorithm is induced by a specific subdivision:

e Standard chromatic subdivision.

dard Subdivision
Std(S)




Topological Notions

* Simplicial complex

¢ Subdivision j,i
® Chromatic Subdivision ;
/

e Standard chromatic Subdivision




Topology & Distributed Computing

Theorem
[Herlihy and Shavit 99]

Chromatic Distributed

Subdivision




From Subdivision to Algorithm

Standard
Chromatic
Subdivision

Distributed
Algorithm

Chromatic

Subdivision

simulated «— 0
Write(initialState,) to R,
while true do
1 & Scan|(RELLIIR] L)
if r contains all then
return simulated
simulated «— 1
Execute Local A (r)
if A returns v then
return the same value v
Write (1) to R




Colored Simplicial Approximation
[Herlihy and Shavit 99]

Standard

Chromatic

.. Chromatic
Subdivision —/ Subdivision

Ny v A )

® Colored simplicial approximation theorem:
any chromatic subdivided simplex can be “approximated”

by a standard chromatic subdivision std*(S)...
® ...for large enough K.

* Yields no bound on K.
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Subdivision Implies Algorithm

Standard

Chromatic

Distributed
Algorithm

Subdivision

Step complexity = Number of subdivisions

® We count subdivisions, to get the step complexity.
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Solving WSB

Properties of the desired solution




Recall: WSB

[Gatni et al. 06]
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n Processes Outputs: 0/1
With identifiers If all output: not all the same

@ Processes are only allowed to compare their identifiers
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Binary Outputs

* All output values are binary.




Monochromatic Simplexes

o Represent executions
with a single
output.
* Forbidden!




Comparison Based Algorithms

Processes only compare their values.

Execution by Py, P,, P; looks like execution by Py, P,, P, .

laal{al{aa}
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Topology: implies symmetry on the boundary.




Who is Bigger?
£




Symmetric Output Coloring
42




Three Steps to Solution




Our Goal

Construct a subdivided simplex & coloring, s.t.:

Symmetric coloring on the boundry. \

>

Without monochromatic simplexes.

Standerd chromatic subdivision.
: i l }




Three Step Plan

Step 1: tind a symmetric subdivision

with only good monochromatic simplexes.

Step 2: eliminate mono. simplexes,

while preserving symmetry.

Step 3: get a mapping from standard subdivision,
yielding a WSB coloring and algorithm.




Step One: Symmetric Boundary




1. Create Boundary

Start by creating a symmetric boundary.

Each i-face is subdivided and colored:

* Create k; 0-mono. simplexes,

for some integer k;.

Number of i-faces = (7:)




1. Fill in the Interior

Add internal O-mono. simplex.
More O-mono. simplexes are created.

Total number of mono.:

n-—1
n
S ()
=1 l




1. Counting Mono. Simplexes
* Each k; has a sign.

* We want:




1. Creating the Boundary
We want: 1 + Z(T)kl = 0.

Subdivide boundaries simultaneously.

Lemma:

If n is not a prime power,

such k;s exist.

There is a solution with
small values: |k;| < n?.

0 (1) subdivisions.




Step Two:
Eliminating Mono. Simplexes




Eliminating Monochromatic Simplexes

® Use subdivisions to eliminate monochromatic simplexes.

* While preserving symmetry on the boundary.

* Adjacent case.




Eliminating Monochromatic Simplexes

® Use subdivisions to eliminate monochromatic simplexes.

® Non Adjacent case.




Eliminating Monochromatic Simplexes

® We can use subdivisions to eliminate monochromatic

simplexes.

¢ Similar constructions

for longer paths.
* 0 (#) subdivisions
for £ —length path.




Odd Paths

¢ Eliminate odd length paths?

* Impossible!

®* We can eliminate only simplexes

of even distance.




Signs
Give each maximal simplex a sign.,

Can eliminate only opposite signs.

Count monochromatic simplexes
by their sign.

® This is an invariant.




2. Create Path

® Choose mono. simplexes of opposite signs.

* Find a connecting path.




2. Eliminate

Choose mono. simplexes of opposite signs.
Find a connecting path

Eliminate.




2. Longer Paths

Path between simplexes of opposite signs.

The longer the path, more subdivisions are needed.




2. Longer Paths

° Path between simplexes of opposite signs.
® The longer the path, more subdivisions are needed.

* Solution:
® Break into short paths.
* Many n-length paths, subdivided simultaneously in O (n).




2. Eliminate Paths

® Match all simplexes in pairs.

* Eliminate pairs.

® Cannot be done simultaneously.




2. Number of paths

® Number of paths:

* Half the number of mono. simplexes:
n—1

% 1+z(’z)|ki| € 0(n7+2)

=1

® g is the largest prime power

dividing n.




2. Number of Subdivisions

e The “expensive” part:

* A simplex shared by many paths

is subdivided many times.

e O(n4* 3) subdivisions.

/

Possible solution:

finding disjoint paths.




Step Three: The Output Map




Cone Subdivision

Simplex $

Second cone subdivision I -cone

subdivision

/




Cone Subdivision

O
Simplex $

—O o—0O

Cone subdivision

[ Ty S @ Sesy o S@)

Second cone subdivision

L-cone

subdivision




Constructing Subdivisions

Pick simplexes and an integer L.
L-cone (in parallel) these simplexes.

Extend to all simplexes.

These are the
subdivisions we used




3. Cone Subdivisions

® We use cone subdivisions.

* How to derive an algorithm?

simulated «— 0
Write(initialState,) to R,
while true do
r < Scan (R,,...,R__})
if r contains all then
return simulated
simulated «— 1
Execute Local A (r)
if A returns v then
return the same value v
Write (1) to R




Cone Subdivisions

® Use cone subdivisions,

than map standard subdivision to them.

* Without using simplicial approximation!




3. Mapping

* Solution:

° Map standard chromatic subdivisions to cone subdivisions.

e “Pull back” coloring accordingly.




3. Mapping

° Properties:
® Map simplexes to simplexes.

® Preserve process identifiers.

® Preserve the structure of the subdivision.




3. Mapping

From a standard chromatic subdivision,

we derive an algorithm.

simulated «<— 0
Write(initialState,) to R,
while true do
5 &y Sean| (R 1L IR
if r contains all then
return simulated \_
simulated «— 1
Execute Local A (r)
if A returns v then
return the same value v
Write (r) to R




Wrap Up

® Step 1: symmetric subdivision,
with 0 mono. simplexes by sign.
* 0(1) subdivisions.

* Step 2: eliminate mono. simplexes,

while preserving symmetry.
* 0(n9%3) subdivisions.

* Step 3: mapping from standard subdivision.

® No subdivisions.

@ Total: O (n9"3) subdivisions.
N




Main Results

Upper bound on the complexity
of solving WSB and (2n-2)-renaming,

Not just existence.
Explicit mapping of standard chromatic subdivision
to cone subdivision.

“We do not discuss Lebesgue numbers in a polite company”

[M. P. Herlihy].

Improved path—elimination procedure.

Do not depend on the length of the path.




Open Questions

o Non—intersecting matching paths.
* Intuitive WSB algorithm.
® (2n-3)-renaming and below.

* Colored computability theorem with bounds.

simulated «— 0
Write(initialState,) to R,
while true do




