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Introduction 

2 



The Model 

3 

 n asynchronous processes. 

 At most n–1 processes can crash. 

 Wait-free algorithms: each nonfaulty process produces an output. 

 Full information. 

 

Atomic 

Read/Write 

... p1 p2 p3 pn 



Iterated Atomic Snapshot 
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 Execution induced by a sequence of blocks: 

 Write together; 

 Read together. 

 Fresh copy of the memory every time. 

 Implemented in 𝑂 𝑛2  overhead [Borowsky and Gafni 97]. 

 



Comparison Based Algorithms 

5 

 

 Processes only compare their identifiers. 

 Execution by P1, P2, P3 looks like execution by P1, P2, P4 . 

 

 

 

 

 

 

 

 

p3 p1 p1 p2 p3 

p1 p1 p2 p4 p4 



M-Renaming 
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[Attiya et al. 90] 

 

n processes  

With identifiers 

Outputs: 1,…,M 

Unique values 

5 

8 

2 

Processes are only allowed to compare their identifiers 



Weak Symmetry Breaking (WSB) 
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[Gafni et al. 06] 

 

n processes  

With identifiers 

Outputs: 0/1 

If all output: not all the same 

1 

1 

0 

Processes are only allowed to compare their identifiers 



M-Renaming Bounds 
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  1,...,n   n+1,...,2n-2 M: 2n-1,...  

[Attiya et al. 90] [Attiya et al. 90] Several Papers 

  1,...,n    n+1,...,2n-2 2n-1,...  

WSB WSB 



M-Renaming Bounds 
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  1,...,n   n+1,... M: 2n-1,...  2n-2  

Prime 

Power 

Non 

Prime 

Power ? 

WSB 

  1,...,n   n+1,... 2n-1,...  2n-2  

WSB 

[Castañeda and Rajsbaum 10]: Lower bounds are wrong. 

n 



Renaming Bounds 
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[Castañeda and Rajsbaum 10]: Lower bounds are wrong. 

 

 Existential proof. 

 No bounds on steps complexity. 



Our Results 

11 

 

 n-process algorithm for WSB and (2𝑛 − 2)-renaming,  

when n is not a prime power. 

 

 Bounded step complexity: 𝑂(𝑛𝑞+5), 
where q is the largest prime power dividing n. 

 

 



Topology & Distributed Computing 

12 



Simplexes 

13 

 Sets of objects. 

 Represented as convex hulls of points. 

 

𝑥  
𝑥, 𝑦  

𝑥, 𝑦, 𝑧  

𝑥, 𝑦, 𝑧, 𝑤  



Simplicial Complexes 

14 

 “Gluings” of simplexes. 

 

 

 
 Some complexes are called subdivisions of others. 

 

 

 

 



Topology & Distributed Computing 

15 

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99]; 

[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00]. 

 Simplicial complexes represent states of the system. 

 

y 

z x 

a 

z x 



Topology & Distributed Computing 
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[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99]; 

[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00]. 

 Simplicial complexes represent states of the system. 

 

 

 

 

 

 

 Colored. 

 

(x, y, z) 

(x, a, z) 



Topology & Distributed Computing 
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 An execution. 

 
x x,y x,y x,y 



Topology & Distributed Computing 
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 An execution. 

 

 

 

 

 All 1-step interleaving. 

 

 

x x,y x,y x,y x,y y 

x x,y x,y y 



Subdivision Implies Algorithm 
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 Simplicial approximation: processes converge on a simplex. 



Subdivision Implies Algorithm 

20 

 Execution: 



Subdivision Implies Algorithm 

21 

 Execution: 



Subdivision Implies Algorithm 

22 

 Execution: 



Subdivision Implies Algorithm 

23 

 Execution: 



Subdivision Implies Algorithm 

24 

 Execution: 



Subdivision Implies Algorithm 

25 

 Execution: 



Outputs 

26 

 Each vertex has double coloring: 

 

 Process id 

 

 

 

 Output value 

 



Subdivision Implies Algorithm 

27 

 Simplicial approximation 

0 

1 

0 

1 
1 

0 

1 0 0 

0 

0 

1 



Chromatic Subdivisions 
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 Chromatic subdivision: can assign a process to each vertex. 

 An algorithm is induced by a specific subdivision: 

 Standard chromatic subdivision. 

 

 

Simplex  

S 
Standard Subdivision  

Std(S) 

Second subdivision:  

Std2(S) StdK(S) ... 



Topological Notions 
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 Simplicial complex 
 

 

 Subdivision 
 

 

 Chromatic Subdivision 
 

 

 Standard chromatic Subdivision 

 



Topology & Distributed Computing 
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Chromatic 
Subdivision 

Distributed 
Algorithm 



From Subdivision to Algorithm 
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Chromatic 
Subdivision 

Standard 
Chromatic 
Subdivision 

Distributed 
Algorithm 

simulated ← 0 

Write(initialStatei) to Ri 

while true do 

    r ← Scan (R0,...,Rn−1) 

   if  r contains all then  

         return simulated 

   simulated ← 1 

   Execute Local A (r) 

   if A returns v then  

        return the same value v 

   Write ( r) to R  

… 



Colored Simplicial Approximation 
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[Herlihy and Shavit 99] 

 

 

 

 

 Colored simplicial approximation theorem: 

any chromatic subdivided simplex can be “approximated” 

by a standard chromatic subdivision stdK(S)… 

 …for large enough K. 

 Yields no bound on K. 

Chromatic 
Subdivision 

Standard 
Chromatic 
Subdivision 



Subdivision Implies Algorithm 
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 We count subdivisions, to get the step complexity. 

Standard 
Chromatic 
Subdivision 

Distributed 
Algorithm 



Solving WSB 

Properties of the desired solution 
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Recall: WSB 

35 

[Gafni et al. 06] 

 

n Processes  

With identifiers 

Outputs: 0/1 

If all output: not all the same 

1 

1 

0 

Processes are only allowed to compare their identifiers 



Binary Outputs 
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 All output values are binary. 

 

 

 

1 

0 

0 

1 
1 

0 

1 0 1 

1 

0 

0 



Monochromatic Simplexes 
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 Represent executions 

with a single 

output. 

 Forbidden! 

 

 



Comparison Based Algorithms 

38 

 

 Processes only compare their values. 

 Execution by P1, P2, P3 looks like execution by P1, P2, P4 . 

 

 

 

 

 

 Topology: implies symmetry on the boundary. 

 

 

 

p3 p1 p1 p2 p3 

p1 p1 p2 p4 p4 



Who is Bigger? 
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Symmetric Output Coloring 

40 



Three Steps to Solution 

41 



Our Goal 

42 

Construct a subdivided simplex & coloring, s.t.: 

 Symmetric coloring on the boundry. 

 

 

 Without monochromatic simplexes. 

 

 

 Standerd chromatic subdivision. 

 

 



Three Step Plan 
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 Step 1: find a symmetric subdivision 

 with only good monochromatic simplexes. 

 

 Step 2: eliminate mono. simplexes, 

 while preserving symmetry. 

 

 Step 3: get a mapping from standard subdivision, 

 yielding a WSB coloring and algorithm. 



Step One: Symmetric Boundary 

44 



 Start by creating a symmetric boundary. 

 

 Each i-face is subdivided and colored: 

 Create 𝑘𝑖 0-mono. simplexes, 

for some integer 𝑘𝑖. 

 

 Number of i-faces = 𝑛
𝑖

. 

1. Create Boundary 

45 



 Add internal 0-mono. simplex. 

 More 0-mono. simplexes are created. 

 Total number of mono.: 

1 + 
𝑛

𝑖
𝑘𝑖

𝑛−1

𝑖=1

 

1. Fill in the Interior 

46 



 Each 𝑘𝑖 has a sign. 

 We want: 

1 + 
𝑛

𝑖
𝑘𝑖 = 0

𝑛−1

𝑖=1

 

1. Counting Mono. Simplexes 
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 We want: 1 +  𝑛
𝑖
𝑘𝑖 = 0. 

 Subdivide boundaries simultaneously. 

 

 

 

 

 

 

 𝑂(1) subdivisions. 

1. Creating the Boundary 

48 



Step Two: 

Eliminating Mono. Simplexes 

49 



Eliminating Monochromatic Simplexes 

50 

 Use subdivisions to eliminate monochromatic simplexes. 

 While preserving symmetry on the boundary. 

 Adjacent case. 



Eliminating Monochromatic Simplexes 
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 Use subdivisions to eliminate monochromatic simplexes. 

 Non Adjacent case. 

 

 



Eliminating Monochromatic Simplexes 

52 

 We can use subdivisions to eliminate monochromatic 

simplexes. 

 Similar constructions 

for longer paths. 

 𝑂(ℓ) subdivisions 

for ℓ-length path. 



Odd Paths 
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 Eliminate odd length paths? 

 Impossible! 

 

 We can eliminate only simplexes 

of even distance. 



Signs 

54 

 Give each maximal simplex a sign. 

 Can eliminate only opposite signs. 

 Count monochromatic simplexes 

by their sign. 

 This is an invariant. 



2. Create Path 

55 

 Choose mono. simplexes of opposite signs. 

 Find a connecting path. 



2. Eliminate 

56 

 Choose mono. simplexes of opposite signs. 

 Find a connecting path  

 Eliminate. 



2. Longer Paths 

57 

 Path between simplexes of opposite signs. 

 The longer the path, more subdivisions are needed. 

 



2. Longer Paths 

58 

 Path between simplexes of opposite signs. 

 The longer the path, more subdivisions are needed. 

 Solution: 

 Break into short paths. 

 Many n-length paths, subdivided simultaneously in 𝑂 𝑛 . 

 



2. Eliminate Paths 
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 Match all simplexes in pairs. 

 Eliminate pairs. 

 

 Cannot be done simultaneously. 

 



2. Number of paths 
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 Number of paths: 

 Half the number of mono. simplexes: 

1

2
1 + 

𝑛

𝑖
𝑘𝑖

𝑛−1

𝑖=1

∈ 𝑂 𝑛𝑞+2  

 q is the largest prime power  

dividing n. 



2. Number of Subdivisions 
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 The “expensive” part: 

 A simplex shared by many paths 

is subdivided many times. 

 

 𝑂 𝑛𝑞+3  subdivisions. 



Step Three: The Output Map  

62 



Cone Subdivision 

63 

Simplex S 

Second cone subdivision L-cone 

subdivision 
... 

Cone subdivision 



Cone Subdivision 
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Simplex S 

Cone subdivision 

Second cone subdivision 

L-cone 

subdivision 

... 



Constructing Subdivisions 

65 

1.  Pick simplexes and an integer L. 

2.  L-cone (in parallel) these simplexes.  

3.  Extend to all simplexes. 



3. Cone Subdivisions 

66 

 We use cone subdivisions. 

 How to derive an algorithm? 

 

simulated ← 0 

Write(initialStatei) to Ri 

while true do 

    r ← Scan (R0,...,Rn−1) 

   if  r contains all then  

         return simulated 

   simulated ← 1 

   Execute Local A (r) 

   if A returns v then  

        return the same value v 

   Write ( r) to R  

… 

? 



Cone Subdivisions 
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 Use cone subdivisions,  

than map standard subdivision to them. 

 

 

 

 

 

 

 

 

 Without using simplicial approximation! 



3. Mapping 
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 Solution: 

 Map standard chromatic subdivisions to cone subdivisions. 

 “Pull back” coloring accordingly. 



3. Mapping 
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 Properties: 

 Map simplexes to simplexes. 

 Preserve process identifiers. 

 Preserve the structure of the subdivision. 

 

 



3. Mapping 

70 

 From a standard chromatic subdivision,  

we derive an algorithm. 

 

 

simulated ← 0 

Write(initialStatei) to Ri 

while true do 

    r ← Scan (R0,...,Rn−1) 

   if  r contains all then  

         return simulated 

   simulated ← 1 

   Execute Local A (r) 

   if A returns v then  

        return the same value v 

   Write ( r) to R  

… 



Wrap Up 

71 

 Step 1: symmetric subdivision, 

 with 0 mono. simplexes by sign. 

 𝑂(1) subdivisions. 

 

 Step 2: eliminate mono. simplexes,  

 while preserving symmetry. 

 𝑂(𝑛𝑞+3) subdivisions. 

 

 Step 3: mapping from standard subdivision. 

 No subdivisions. 

 

 



Main Results 

72 

 

 Upper bound on the complexity  

of solving WSB and (2n-2)-renaming. 

 Not just existence. 

 Explicit mapping of standard chromatic subdivision  

to cone subdivision. 

 “We do not discuss Lebesgue numbers in a polite company”  

[M. P. Herlihy]. 

 Improved path-elimination procedure. 

 Do not depend on the length of the path. 

 

 

 



Open Questions 
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 Non-intersecting matching paths. 

 Intuitive WSB algorithm. 

 (2n-3)-renaming and below. 

 Colored computability theorem with bounds. 

 

? 

M: 2n-1,...  

n-Non 

Prime 

Power 

1,...,n   n+1,...,2n-3 2n-1,...  2n-2  

WSB 

simulated ← 0 

Write(initialStatei) to Ri 

while true do 

    r ← Scan (R0,...,Rn−1) 

   if  r contains all then  

         return simulated 

   simulated ← 1 

   Execute Local A (r) 

   if A returns v then  

        return the same value v 

   Write ( r) to R  

… 


