Upper Bound on the Complexity of

Solving Renaming

Ami Paz, Technion

Joint work with: Hagit Attiya, Technion
Armando Castaneda, Technion

Maurice Herlihy, Brown

PODC 2013 Best Student Paper Award

Introduction

The Model

Read/ Write l Share d

n asynchronous processes.
At most n—1 processes can crash.
Wait-free algorithms: each nonfaulty process produces an output.

Full information.

lterated Atomic Snapshot

* Execution induced by a sequence of blocks:
* Write together;
® Read together.

® Fresh copy of the memory every time.

o Implemented in 0(n?) overhead [Borowsky and Gafni 97].

.@. .ﬂ. A £ & .ﬂ

7P
el el =l il

©

Comparison Based Algorithms

Processes only compare their identifiers.

Execution by Py, P,, P; looks like execution by Py, P,, P, .

laal{al{aa}
laal{al{aa}

M-Renaming
[Attiya et al. 90]

Nl processes Outputs: 1,...,M
With identifiers Unique values

@ Processes are only allowed to compare their identifiers

S Y

O

\
Weak Symmetry Breaking (WSB)
[Gatni et al. 06]
& 1 e
-
_— el 1. @
~
& o
1 processes Outputs: 0/1 |
With identifiers If all output: not all the same
Equivalent to (2n-2)-renaming
/

M-Renaming Bounds

| [(tan [wblednd] 2ol

X X V

[Attiya et al. 90] Several Papers [Attiya et al. 90]

M-Renaming Bounds

[Castaneda and Rajsbaum 10]: Lower bounds are wrong.

M| 1,...,n ntl,... 2n-2 2n-1,...
0 WSB

Prime

Power

Non

Prime x 7 V V
Power 0

Renaming Bounds

[Castaneda and Rajsbaum 10]: Lower bounds are wrong.

Existential proof .

No bounds on steps complexity.

Our Results

n-process algorithm for WSB and (271 — 2)-renaming,

when n is not a prime power.

Bounded step complexity: 0, (TLQ+5) :

where g is the largest prime power dividing n.

Topology & Distributed Computing

Simplexes

Sets of objects.

Represented as convex hulls of points.

{x}
).C x,y}

o

Simplicial Complexes

o “Gluings” of simplexes.

* Some complexes are called subdivisions of others.

Topology & Distributed Computing

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99];
[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

° Simplicial Complexes represent states of the system.

Topology & Distributed Computing

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99];
[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

° Simplicial Complexes represent states of the system.

* Colored.

Topology & Distributed Computing

® An execution.

Topology & Distributed Computing

An execution.

{aHal {8} [a}{a}

All 1-step interleaving.

{a}{a] {a &} {a}{a]

Subdivision Implies Algorithm

® Simplicial approximation: processes converge on a simplex.

Subdivision Implies Algorithm

. {a} {a}{o &}

a . B o
{a}{a} {aa} {a}{a}

Subdivision Implies Algorithm

e Execution: -[,g]- -[E]- {m}

Subdivision Implies Algorithm

sscnn: {} {a]} {0 & & } {a}

Subdivision Implies Algorithm

v {a} {a} {4 @ a}{a}

Subdivision Implies Algorithm

oo {a} {a} {B ® &} {a}

A

A%
1R

4)" “‘
. [' 15" \4
/ %V‘k‘}\\ "'j N

Subdivision Implies Algorithm

A

N
NN

W Ve
A .
/—%'F§ b,

* Execution:

Outputs

Each vertex has double coloring:

® Process id

A)
® ®

* Output value

*e
°9

*®
o

Subdivision Implies Algorithm

° Simplicial approximation

Chromatic Subdivisions

® Chromatic subdivision: can assign a process to each vertex.

* An algorithm is induced by a specific subdivision:

e Standard chromatic subdivision.

dard Subdivision
Std(S)

Topological Notions

* Simplicial complex

¢ Subdivision j,i
® Chromatic Subdivision ;
/

e Standard chromatic Subdivision

Topology & Distributed Computing

Theorem
[Herlihy and Shavit 99]

Chromatic Distributed

Subdivision

From Subdivision to Algorithm

Standard
Chromatic
Subdivision

Distributed
Algorithm

Chromatic

Subdivision

simulated «— 0
Write(initialState,) to R,
while true do
1 & Scan|(RELLIIR] L)
if r contains all then
return simulated
simulated «— 1
Execute Local A (r)
if A returns v then
return the same value v
Write (1) to R

Colored Simplicial Approximation
[Herlihy and Shavit 99]

Standard

Chromatic

.. Chromatic
Subdivision —/ Subdivision

Ny v A)

® Colored simplicial approximation theorem:
any chromatic subdivided simplex can be “approximated”

by a standard chromatic subdivision std*(S)...
® ...for large enough K.

* Yields no bound on K.

©

Subdivision Implies Algorithm

Standard

Chromatic

Distributed
Algorithm

Subdivision

Step complexity = Number of subdivisions

® We count subdivisions, to get the step complexity.

©

Solving WSB

Properties of the desired solution

Recall: WSB

[Gatni et al. 06]

Y-

— I — 1\ o
~
a8 o |
n Processes Outputs: 0/1
With identifiers If all output: not all the same

@ Processes are only allowed to compare their identifiers

S Y,

Binary Outputs

* All output values are binary.

Monochromatic Simplexes

o Represent executions
with a single
output.
* Forbidden!

Comparison Based Algorithms

Processes only compare their values.

Execution by Py, P,, P; looks like execution by Py, P,, P, .

laal{al{aa}
laal{al{aa}

Topology: implies symmetry on the boundary.

Who is Bigger?
£

Symmetric Output Coloring
42

Three Steps to Solution

Our Goal

Construct a subdivided simplex & coloring, s.t.:

Symmetric coloring on the boundry. \

>

Without monochromatic simplexes.

Standerd chromatic subdivision.
: i l }

Three Step Plan

Step 1: tind a symmetric subdivision

with only good monochromatic simplexes.

Step 2: eliminate mono. simplexes,

while preserving symmetry.

Step 3: get a mapping from standard subdivision,
yielding a WSB coloring and algorithm.

Step One: Symmetric Boundary

1. Create Boundary

Start by creating a symmetric boundary.

Each i-face is subdivided and colored:

* Create k; 0-mono. simplexes,

for some integer k;.

Number of i-faces = (7:)

1. Fill in the Interior

Add internal O-mono. simplex.
More O-mono. simplexes are created.

Total number of mono.:

n-—1
n
S ()
=1 l

1. Counting Mono. Simplexes
* Each k; has a sign.

* We want:

1. Creating the Boundary
We want: 1 + Z(T)kl = 0.

Subdivide boundaries simultaneously.

Lemma:

If n is not a prime power,

such k;s exist.

There is a solution with
small values: |k;| < n?.

0 (1) subdivisions.

Step Two:
Eliminating Mono. Simplexes

Eliminating Monochromatic Simplexes

® Use subdivisions to eliminate monochromatic simplexes.

* While preserving symmetry on the boundary.

* Adjacent case.

Eliminating Monochromatic Simplexes

® Use subdivisions to eliminate monochromatic simplexes.

® Non Adjacent case.

Eliminating Monochromatic Simplexes

® We can use subdivisions to eliminate monochromatic

simplexes.

¢ Similar constructions

for longer paths.
* 0 (#) subdivisions
for £ —length path.

Odd Paths

¢ Eliminate odd length paths?

* Impossible!

®* We can eliminate only simplexes

of even distance.

Signs
Give each maximal simplex a sign.,

Can eliminate only opposite signs.

Count monochromatic simplexes
by their sign.

® This is an invariant.

2. Create Path

® Choose mono. simplexes of opposite signs.

* Find a connecting path.

2. Eliminate

Choose mono. simplexes of opposite signs.
Find a connecting path

Eliminate.

2. Longer Paths

Path between simplexes of opposite signs.

The longer the path, more subdivisions are needed.

2. Longer Paths

° Path between simplexes of opposite signs.
® The longer the path, more subdivisions are needed.

* Solution:
® Break into short paths.
* Many n-length paths, subdivided simultaneously in O (n).

2. Eliminate Paths

® Match all simplexes in pairs.

* Eliminate pairs.

® Cannot be done simultaneously.

2. Number of paths

® Number of paths:

* Half the number of mono. simplexes:
n—1

% 1+z(’z)|ki| € 0(n7+2)

=1

® g is the largest prime power

dividing n.

2. Number of Subdivisions

e The “expensive” part:

* A simplex shared by many paths

is subdivided many times.

e O(n4* 3) subdivisions.

/

Possible solution:

finding disjoint paths.

Step Three: The Output Map

Cone Subdivision

Simplex $

Second cone subdivision I -cone

subdivision

/

Cone Subdivision

O
Simplex $

—O o—0O

Cone subdivision

[Ty S @ Sesy o S@)

Second cone subdivision

L-cone

subdivision

Constructing Subdivisions

Pick simplexes and an integer L.
L-cone (in parallel) these simplexes.

Extend to all simplexes.

These are the
subdivisions we used

3. Cone Subdivisions

® We use cone subdivisions.

* How to derive an algorithm?

simulated «— 0
Write(initialState,) to R,
while true do
r < Scan (R,,...,R__})
if r contains all then
return simulated
simulated «— 1
Execute Local A (r)
if A returns v then
return the same value v
Write (1) to R

Cone Subdivisions

® Use cone subdivisions,

than map standard subdivision to them.

* Without using simplicial approximation!

3. Mapping

* Solution:

° Map standard chromatic subdivisions to cone subdivisions.

e “Pull back” coloring accordingly.

3. Mapping

° Properties:
® Map simplexes to simplexes.

® Preserve process identifiers.

® Preserve the structure of the subdivision.

3. Mapping

From a standard chromatic subdivision,

we derive an algorithm.

simulated «<— 0
Write(initialState,) to R,
while true do
5 &y Sean| (R 1L IR
if r contains all then
return simulated _
simulated «— 1
Execute Local A (r)
if A returns v then
return the same value v
Write (r) to R

Wrap Up

® Step 1: symmetric subdivision,
with 0 mono. simplexes by sign.
* 0(1) subdivisions.

* Step 2: eliminate mono. simplexes,

while preserving symmetry.
* 0(n9%3) subdivisions.

* Step 3: mapping from standard subdivision.

® No subdivisions.

@ Total: O (n9"3) subdivisions.
N

Main Results

Upper bound on the complexity
of solving WSB and (2n-2)-renaming,

Not just existence.
Explicit mapping of standard chromatic subdivision
to cone subdivision.

“We do not discuss Lebesgue numbers in a polite company”

[M. P. Herlihy].

Improved path—elimination procedure.

Do not depend on the length of the path.

Open Questions

o Non—intersecting matching paths.
* Intuitive WSB algorithm.
® (2n-3)-renaming and below.

* Colored computability theorem with bounds.

simulated «— 0
Write(initialState,) to R,
while true do

