Upper Bound on the Complexity of Solving Renaming

Ami Paz, Technion

Joint work with:

Hagit Attiya, Technion Armando Castañeda, Technion Maurice Herlihy, Brown

PODC 2013 Best Student Paper Award

Introduction

The Model

- *n* asynchronous processes.
- At most *n*–1 processes can crash.
- Wait-free algorithms: each nonfaulty process produces an output.
- Full information.

Iterated Atomic Snapshot

- Execution induced by a sequence of blocks:
 - Write together;
 - Read together.
- Fresh copy of the memory every time.
- Implemented in $O(n^2)$ overhead [Borowsky and Gafni 97].

Comparison Based Algorithms

- Processes only compare their identifiers.
- Execution by P_1 , P_2 , P_3 looks like execution by P_1 , P_2 , P_4 .

M-Renaming

[Attiya et al. 90]

n processes With identifiers Outputs: 1,...,*M* Unique values

Processes are only allowed to compare their identifiers

Weak Symmetry Breaking (WSB) [Gafni et al. 06]

Equivalent to (2n-2)-renaming

M-Renaming Bounds

[Castañeda and Rajsbaum 10]: Lower bounds are wrong.

Renaming Bounds

[Castañeda and Rajsbaum 10]: Lower bounds are wrong.

- Existential proof.
- No bounds on steps complexity.

Our Results

- *n*-process algorithm for WSB and (2n 2)-renaming, when *n* is not a prime power.
- Bounded step complexity: $O(n^{q+5})$, where *q* is the largest prime power dividing *n*.

Simplexes

- Sets of objects.
- Represented as convex hulls of points.

Simplicial Complexes

• "Gluings" of simplexes.

• Some complexes are called subdivisions of others.

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99]; [Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

• Simplicial complexes represent states of the system.

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99]; [Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

• Simplicial complexes represent states of the system.

• An execution.

• An execution.

• All 1-step interleaving.

Subdivision Implies Algorithm

• Simplicial approximation: processes converge on a simplex.

Subdivision Implies Algorithm Execution: <

Subdivision Implies Algorithm Execution: {A} {A} {A}

Subdivision Implies Algorithm Execution: <

Outputs

- Each vertex has double coloring:
 - Process id

• Output value

Subdivision Implies Algorithm

• Simplicial approximation

Chromatic Subdivisions

ndard Subdivision

Std(**S**)

• Chromatic subdivision: can assign a process to each vertex.

Second sul

- An algorithm is induced by a specific subdivision:
 - Standard chromatic subdivision.

Simple

Topological Notions

• Simplicial complex

• Subdivision

• Chromatic Subdivision

• Standard chromatic Subdivision

Theorem

[Herlihy and Shavit 99]

From Subdivision to Algorithm

Colored Simplicial Approximation

[Herlihy and Shavit 99]

- Colored simplicial approximation theorem: any chromatic subdivided simplex can be "approximated" by a standard chromatic subdivision std^K(S)...
 - ... for large enough K.
- Yields no bound on *K*.

Subdivision Implies Algorithm

Step complexity = Number of subdivisions

• We count subdivisions, to get the step complexity.

Solving WSB

Properties of the desired solution

Recall: WSB

[Gafni et al. 06]

n Processes With identifiers Outputs: 0/1 If all output: not all the same

Processes are only allowed to compare their identifiers

Binary Outputs

• All output values are binary.

Monochromatic Simplexes

Comparison Based Algorithms

- Processes only compare their values.
- Execution by P_1 , P_2 , P_3 looks like execution by P_1 , P_2 , P_4 .

• Topology: implies symmetry on the boundary.

Three Steps to Solution

Our Goal

Construct a subdivided simplex & coloring, s.t.:

• Symmetric coloring on the boundry.

• Without monochromatic simplexes.

Three Step Plan

• Step 1: find a symmetric subdivision with only good monochromatic simplexes.

• Step 2: eliminate mono. simplexes, while preserving symmetry.

• Step 3: get a mapping from standard subdivision, yielding a WSB coloring and algorithm.

Step One: Symmetric Boundary

1. Create Boundary

• Start by creating a symmetric boundary.

Each *i*-face is subdivided and colored:
Create *k_i* 0-mono. simplexes, for some integer *k_i*.

• Number of *i*-faces = $\binom{n}{i}$.

1. Fill in the Interior

- Add internal 0-mono. simplex.
- More 0-mono. simplexes are created.
- Total number of mono.:

$$1 + \sum_{i=1}^{n-1} \binom{n}{i} k_i$$

1. Counting Mono. Simplexes

- Each *k_i* has a sign.
- We want:

1. Creating the Boundary

- We want: $1 + \sum {n \choose i} k_i = 0$.
- Subdivide boundaries simultaneously.

- If *n* is not a prime power, such *k_i*s exist.
- There is a solution with small values: $|k_i| < n^2$.

• 0(1) subdivisions.

Step Two: Eliminating Mono. Simplexes

Eliminating Monochromatic Simplexes

- Use subdivisions to eliminate monochromatic simplexes.
- While preserving symmetry on the boundary.
 - Adjacent case.

Eliminating Monochromatic Simplexes

- Use subdivisions to eliminate monochromatic simplexes.
 - Non Adjacent case.

Eliminating Monochromatic Simplexes

- We can use subdivisions to eliminate monochromatic simplexes.
- Similar constructions for longer paths.
- $O(\ell)$ subdivisions for ℓ -length path.

Odd Paths

- Eliminate odd length paths?
 - Impossible!
- We can eliminate only simplexes of even distance.

Signs

- Give each maximal simplex a sign.
- Can eliminate only opposite signs.
- Count monochromatic simplexes by their sign.
 - This is an invariant.

2. Create Path

- Choose mono. simplexes of opposite signs.
- Find a connecting path.

2. Eliminate

- Choose mono. simplexes of opposite signs.
- Find a connecting path
- Eliminate.

2. Longer Paths

- Path between simplexes of opposite signs.
- The longer the path, more subdivisions are needed.

2. Longer Paths

- Path between simplexes of opposite signs.
- The longer the path, more subdivisions are needed.
- Solution:
 - Break into short paths.
 - Many *n*-length paths, subdivided simultaneously in O(n).

2. Eliminate Paths

- Match all simplexes in pairs.
- Eliminate pairs.
- Cannot be done simultaneously.

2. Number of paths

- Number of paths:
 - Half the number of mono. simplexes:

$$\frac{1}{2}\left(1+\sum_{i=1}^{n-1}\binom{n}{i}|k_i|\right) \in O(n^{q+2})$$

• *q* is the largest prime power dividing *n*.

2. Number of Subdivisions

- The "expensive" part:
 - A simplex shared by many paths is subdivided many times.

• $O(n^{q+3})$ subdivisions.

Possible solution: finding disjoint paths.

Step Three: The Output Map

Constructing Subdivisions

- 1. Pick simplexes and an integer *L*.
- 2. *L*-cone (in parallel) these simplexes.
- 3. Extend to all simplexes.

These are the subdivisions we used

3. Cone Subdivisions

- We use cone subdivisions.
- How to derive an algorithm?

Cone Subdivisions

• Use cone subdivisions,

than map standard subdivision to them.

• Without using simplicial approximation!

3. Mapping

- Solution:
 - Map standard chromatic subdivisions to cone subdivisions.
 - "Pull back" coloring accordingly.

3. Mapping

- Properties:
 - Map simplexes to simplexes.
 - Preserve process identifiers.
 - Preserve the structure of the subdivision.

3. Mapping

• From a standard chromatic subdivision, we derive an algorithm.

Wrap Up

- Step 1: symmetric subdivision, with 0 mono. simplexes by sign.
 - 0(1) subdivisions.
- Step 2: eliminate mono. simplexes, while preserving symmetry.
 O(n^{q+3}) subdivisions.

- Step 3: mapping from standard subdivision.
 - No subdivisions.

Total: $O(n^{q+3})$ subdivisions.

Main Results

- Upper bound on the complexity of solving WSB and (2*n*-2)-renaming.
 - Not just existence.
- Explicit mapping of standard chromatic subdivision to cone subdivision.
 - "We do not discuss Lebesgue numbers in a polite company" [M. P. Herlihy].
- Improved path-elimination procedure.
 - Do not depend on the length of the path.
Open Questions

- Non-intersecting matching paths.
- Intuitive WSB algorithm.
- (2*n*-3)-renaming and below.
- Colored computability theorem with bounds.

