
Ami Paz, Technion

Upper Bound on the Complexity of

Solving Renaming

Joint work with: Hagit Attiya, Technion

 Armando Castañeda, Technion

 Maurice Herlihy, Brown

PODC 2013 Best Student Paper Award

Introduction

2

The Model

3

 n asynchronous processes.

 At most n–1 processes can crash.

 Wait-free algorithms: each nonfaulty process produces an output.

 Full information.

Atomic

Read/Write

... p1 p2 p3 pn

Iterated Atomic Snapshot

4

 Execution induced by a sequence of blocks:

 Write together;

 Read together.

 Fresh copy of the memory every time.

 Implemented in 𝑂 𝑛2 overhead [Borowsky and Gafni 97].

Comparison Based Algorithms

5

 Processes only compare their identifiers.

 Execution by P1, P2, P3 looks like execution by P1, P2, P4 .

p3 p1 p1 p2 p3

p1 p1 p2 p4 p4

M-Renaming

6

[Attiya et al. 90]

n processes

With identifiers

Outputs: 1,…,M

Unique values

5

8

2

Processes are only allowed to compare their identifiers

Weak Symmetry Breaking (WSB)

7

[Gafni et al. 06]

n processes

With identifiers

Outputs: 0/1

If all output: not all the same

1

1

0

Processes are only allowed to compare their identifiers

M-Renaming Bounds

8

 1,...,n n+1,...,2n-2 M: 2n-1,...

[Attiya et al. 90] [Attiya et al. 90] Several Papers

 1,...,n n+1,...,2n-2 2n-1,...

WSB WSB

M-Renaming Bounds

9

 1,...,n n+1,... M: 2n-1,... 2n-2

Prime

Power

Non

Prime

Power ?

WSB

 1,...,n n+1,... 2n-1,... 2n-2

WSB

[Castañeda and Rajsbaum 10]: Lower bounds are wrong.

n

Renaming Bounds

10

[Castañeda and Rajsbaum 10]: Lower bounds are wrong.

 Existential proof.

 No bounds on steps complexity.

Our Results

11

 n-process algorithm for WSB and (2𝑛 − 2)-renaming,

when n is not a prime power.

 Bounded step complexity: 𝑂(𝑛𝑞+5),
where q is the largest prime power dividing n.

Topology & Distributed Computing

12

Simplexes

13

 Sets of objects.

 Represented as convex hulls of points.

𝑥
𝑥, 𝑦

𝑥, 𝑦, 𝑧

𝑥, 𝑦, 𝑧, 𝑤

Simplicial Complexes

14

 “Gluings” of simplexes.

 Some complexes are called subdivisions of others.

Topology & Distributed Computing

15

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99];

[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

 Simplicial complexes represent states of the system.

y

z x

a

z x

Topology & Distributed Computing

16

[Borowsky and Gafni 93]; [Herlihy and Shavit 93,99];

[Saks and Zaharoglou 93,00]; [Herlihy and Rajsbaum 94,00].

 Simplicial complexes represent states of the system.

 Colored.

(x, y, z)

(x, a, z)

Topology & Distributed Computing

17

 An execution.

x x,y x,y x,y

Topology & Distributed Computing

18

 An execution.

 All 1-step interleaving.

x x,y x,y x,y x,y y

x x,y x,y y

Subdivision Implies Algorithm

19

 Simplicial approximation: processes converge on a simplex.

Subdivision Implies Algorithm

20

 Execution:

Subdivision Implies Algorithm

21

 Execution:

Subdivision Implies Algorithm

22

 Execution:

Subdivision Implies Algorithm

23

 Execution:

Subdivision Implies Algorithm

24

 Execution:

Subdivision Implies Algorithm

25

 Execution:

Outputs

26

 Each vertex has double coloring:

 Process id

 Output value

Subdivision Implies Algorithm

27

 Simplicial approximation

0

1

0

1
1

0

1 0 0

0

0

1

Chromatic Subdivisions

28

 Chromatic subdivision: can assign a process to each vertex.

 An algorithm is induced by a specific subdivision:

 Standard chromatic subdivision.

Simplex

S
Standard Subdivision

Std(S)

Second subdivision:

Std2(S) StdK(S) ...

Topological Notions

29

 Simplicial complex

 Subdivision

 Chromatic Subdivision

 Standard chromatic Subdivision

Topology & Distributed Computing

30

Chromatic
Subdivision

Distributed
Algorithm

From Subdivision to Algorithm

31

Chromatic
Subdivision

Standard
Chromatic
Subdivision

Distributed
Algorithm

simulated ← 0

Write(initialStatei) to Ri

while true do

 r ← Scan (R0,...,Rn−1)

 if r contains all then

 return simulated

 simulated ← 1

 Execute Local A (r)

 if A returns v then

 return the same value v

 Write (r) to R

…

Colored Simplicial Approximation

32

[Herlihy and Shavit 99]

 Colored simplicial approximation theorem:

any chromatic subdivided simplex can be “approximated”

by a standard chromatic subdivision stdK(S)…

 …for large enough K.

 Yields no bound on K.

Chromatic
Subdivision

Standard
Chromatic
Subdivision

Subdivision Implies Algorithm

33

 We count subdivisions, to get the step complexity.

Standard
Chromatic
Subdivision

Distributed
Algorithm

Solving WSB

Properties of the desired solution

34

Recall: WSB

35

[Gafni et al. 06]

n Processes

With identifiers

Outputs: 0/1

If all output: not all the same

1

1

0

Processes are only allowed to compare their identifiers

Binary Outputs

36

 All output values are binary.

1

0

0

1
1

0

1 0 1

1

0

0

Monochromatic Simplexes

37

 Represent executions

with a single

output.

 Forbidden!

Comparison Based Algorithms

38

 Processes only compare their values.

 Execution by P1, P2, P3 looks like execution by P1, P2, P4 .

 Topology: implies symmetry on the boundary.

p3 p1 p1 p2 p3

p1 p1 p2 p4 p4

Who is Bigger?

39

Symmetric Output Coloring

40

Three Steps to Solution

41

Our Goal

42

Construct a subdivided simplex & coloring, s.t.:

 Symmetric coloring on the boundry.

 Without monochromatic simplexes.

 Standerd chromatic subdivision.

Three Step Plan

43

 Step 1: find a symmetric subdivision

 with only good monochromatic simplexes.

 Step 2: eliminate mono. simplexes,

 while preserving symmetry.

 Step 3: get a mapping from standard subdivision,

 yielding a WSB coloring and algorithm.

Step One: Symmetric Boundary

44

 Start by creating a symmetric boundary.

 Each i-face is subdivided and colored:

 Create 𝑘𝑖 0-mono. simplexes,

for some integer 𝑘𝑖.

 Number of i-faces = 𝑛
𝑖

.

1. Create Boundary

45

 Add internal 0-mono. simplex.

 More 0-mono. simplexes are created.

 Total number of mono.:

1 +
𝑛

𝑖
𝑘𝑖

𝑛−1

𝑖=1

1. Fill in the Interior

46

 Each 𝑘𝑖 has a sign.

 We want:

1 +
𝑛

𝑖
𝑘𝑖 = 0

𝑛−1

𝑖=1

1. Counting Mono. Simplexes

47

 We want: 1 + 𝑛
𝑖
𝑘𝑖 = 0.

 Subdivide boundaries simultaneously.

 𝑂(1) subdivisions.

1. Creating the Boundary

48

Step Two:

Eliminating Mono. Simplexes

49

Eliminating Monochromatic Simplexes

50

 Use subdivisions to eliminate monochromatic simplexes.

 While preserving symmetry on the boundary.

 Adjacent case.

Eliminating Monochromatic Simplexes

51

 Use subdivisions to eliminate monochromatic simplexes.

 Non Adjacent case.

Eliminating Monochromatic Simplexes

52

 We can use subdivisions to eliminate monochromatic

simplexes.

 Similar constructions

for longer paths.

 𝑂(ℓ) subdivisions

for ℓ-length path.

Odd Paths

53

 Eliminate odd length paths?

 Impossible!

 We can eliminate only simplexes

of even distance.

Signs

54

 Give each maximal simplex a sign.

 Can eliminate only opposite signs.

 Count monochromatic simplexes

by their sign.

 This is an invariant.

2. Create Path

55

 Choose mono. simplexes of opposite signs.

 Find a connecting path.

2. Eliminate

56

 Choose mono. simplexes of opposite signs.

 Find a connecting path

 Eliminate.

2. Longer Paths

57

 Path between simplexes of opposite signs.

 The longer the path, more subdivisions are needed.

2. Longer Paths

58

 Path between simplexes of opposite signs.

 The longer the path, more subdivisions are needed.

 Solution:

 Break into short paths.

 Many n-length paths, subdivided simultaneously in 𝑂 𝑛 .

2. Eliminate Paths

59

 Match all simplexes in pairs.

 Eliminate pairs.

 Cannot be done simultaneously.

2. Number of paths

60

 Number of paths:

 Half the number of mono. simplexes:

1

2
1 +

𝑛

𝑖
𝑘𝑖

𝑛−1

𝑖=1

∈ 𝑂 𝑛𝑞+2

 q is the largest prime power

dividing n.

2. Number of Subdivisions

61

 The “expensive” part:

 A simplex shared by many paths

is subdivided many times.

 𝑂 𝑛𝑞+3 subdivisions.

Step Three: The Output Map

62

Cone Subdivision

63

Simplex S

Second cone subdivision L-cone

subdivision
...

Cone subdivision

Cone Subdivision

64

Simplex S

Cone subdivision

Second cone subdivision

L-cone

subdivision

...

Constructing Subdivisions

65

1. Pick simplexes and an integer L.

2. L-cone (in parallel) these simplexes.

3. Extend to all simplexes.

3. Cone Subdivisions

66

 We use cone subdivisions.

 How to derive an algorithm?

simulated ← 0

Write(initialStatei) to Ri

while true do

 r ← Scan (R0,...,Rn−1)

 if r contains all then

 return simulated

 simulated ← 1

 Execute Local A (r)

 if A returns v then

 return the same value v

 Write (r) to R

…

?

Cone Subdivisions

67

 Use cone subdivisions,

than map standard subdivision to them.

 Without using simplicial approximation!

3. Mapping

68

 Solution:

 Map standard chromatic subdivisions to cone subdivisions.

 “Pull back” coloring accordingly.

3. Mapping

69

 Properties:

 Map simplexes to simplexes.

 Preserve process identifiers.

 Preserve the structure of the subdivision.

3. Mapping

70

 From a standard chromatic subdivision,

we derive an algorithm.

simulated ← 0

Write(initialStatei) to Ri

while true do

 r ← Scan (R0,...,Rn−1)

 if r contains all then

 return simulated

 simulated ← 1

 Execute Local A (r)

 if A returns v then

 return the same value v

 Write (r) to R

…

Wrap Up

71

 Step 1: symmetric subdivision,

 with 0 mono. simplexes by sign.

 𝑂(1) subdivisions.

 Step 2: eliminate mono. simplexes,

 while preserving symmetry.

 𝑂(𝑛𝑞+3) subdivisions.

 Step 3: mapping from standard subdivision.

 No subdivisions.

Main Results

72

 Upper bound on the complexity

of solving WSB and (2n-2)-renaming.

 Not just existence.

 Explicit mapping of standard chromatic subdivision

to cone subdivision.

 “We do not discuss Lebesgue numbers in a polite company”

[M. P. Herlihy].

 Improved path-elimination procedure.

 Do not depend on the length of the path.

Open Questions

73

 Non-intersecting matching paths.

 Intuitive WSB algorithm.

 (2n-3)-renaming and below.

 Colored computability theorem with bounds.

?

M: 2n-1,...

n-Non

Prime

Power

1,...,n n+1,...,2n-3 2n-1,... 2n-2

WSB

simulated ← 0

Write(initialStatei) to Ri

while true do

 r ← Scan (R0,...,Rn−1)

 if r contains all then

 return simulated

 simulated ← 1

 Execute Local A (r)

 if A returns v then

 return the same value v

 Write (r) to R

…

