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Distributed Collaborative Editors

1 Across space, time, organizations.

2 Two phases :

a locally prepare operations to send
b execute remote operations

3 Operational transform

+ local operations cheap
– remote operations complex

4 Conflict-free Replicated Data Type

2 phases share computational cost

Distributed Collaborative editors

Optimistic replication

CRDT OT

Google Docs CoVim

↗ collaborators ⇒ quadratic ↗ remote operations
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Distributed Collaborative Editors

A document can be seen as a sequence od basic elements (characters,
words, lines, etc.). The problem is non trivial because it is necessary that
the edition (updating of the document) ensures the following three
properties (CCI) :

1 Convergence : the different copies need to converge to a same copy

2 Causality : any operation needs to reflect the operations that occurred
causally before it

3 Intention : the effect of an operation needs to meet the intention of
the user that ordered it
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CRDTs for sequences

1 Two commutative operations :

Insert / delete
Identify the basic elements
The set of ids is totally
ordered
The ids make the sequence

2 The operations :

insert(p, elem, q)
⇒basic function alloc(p, q)
delete(idelem)
idelem : immutable

3 Deleted elements are only
marked

⇒ eventually needs purge

4 The size of identifiers may grow

linearly wrt # operations
very fast depending on the use
case

CRDTs sequence

Variable-size Ids

Logoot Treedoc

Tombstones

WOOT

WOOTO

WOOTH

CT

RGA

Treedoc
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Motivations

Spectrum of two Wikipedia documents.
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(a) Page edited in the end. ⇒ 169.7
bits/id.
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(b) Page edited in front. ⇒ 172.25
bits/id.

⇒ Allocation strategies are CRUCIAL
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bits/id.
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bits/id.

⇒ Allocation strategies are CRUCIAL
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Abstract Problem (1)

Achour

Yehuda

Maurice

Michel

Eli
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n cards can be named using ids of size O(log n)
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Abstract Problem (1)

Achour

Yehuda

Maurice

Michel

Eli

100

000

010

001

011

Even if one wants to preserve the order defined by the original names, n
cards can be renamed with ids of size O(log n)
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Abstract Problem (2)

000

Achour

Yehuda

Maurice

Michel

Eli

How about if the original names are not a priori known ?
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Abstract Problem (2)

000 ???

Yehuda

Maurice

Michel

Eli Achour

One needs to have spare space (dense set of ids)
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Abstract Problem (2)

100 000, 001 or 010

Yehuda

Maurice

Michel

Eli Achour

Is it possible to avoid all this loss of space ?
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Bear confesses. . .
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Problem

Variable-size identifier

A variable-size identifier id is
a sequence of numbers
id = [p1.p2 . . . pn] which can
designate a path in a tree.

0 99
10 11 14 15

Begin End

13 42 92

a
e f g

b c d

Problem statement

Let D a document on which n insert operations have been performed. Let
I(D) = {id |( , id) ∈ D}. The function alloc(idp, idq) should provide
identifiers such as : ∑

id∈I

|id |2
n < O(n)

|id |2 means log2(id) aka. bit-length
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Proposal : LSEQ

Three components :

base doubling,

multiple allocation strategies,

random strategy choice.

Intuition

As it is complex to predict the editing behaviour, some depths of the tree
on a given path can be lost if the reward compensates the loss.
In other terms, even if LSEQ chooses the wrong strategy at a given time,
it will eventually choose the good one, and that choice will amortize the
cost of all previous lost depths.
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Base doubling

Exponential trees :

Under uniform distribution :

Spatial complexity : O(n log log n). Where n the number of Ids.

[p1.p2 . . . pn] ⇒ |pn|2 = |pn−1|2 + 1. Where |p1| = base

+ 1 bit ⇒ x2 identifiers

Intuition

If the number of insert operations is low, the id bit-length can stay small.
On the other hand, when the number of insertions increases, it is
profitable to allocate larger identifiers.
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Multiple allocation strategies
boundary :

+ Good : page edited in the end.

– Good : page edited in front.

boundary+ boundary-

insertion

+20

0 100

0
11

100

5051

insertion

−20

0 100

0
89

100

5051

Intuition

The allocation strategy boundary is not sufficient to be employed as a
safe allocation strategy. However, by using its antagonist strategy, each
strategy cancels the other’s deficiency.
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Random strategy choice

Unique strategy : not sufficient

⇒ Strategy choice : When ? Which ?

Intuition : When

The opening of a new space has a major meaning : Either the allocation
strategy went wrong, or, on the opposite, a high number of insertions
saturated the previous depths, meaning that it requires more space.
Therefore, the space opening is an ideal moment to decide which strategy
to employ.

Intuition : Which

Since it is impossible to a priori know the editing behaviour, the strategy
choice should not favorize any behaviour. Consequently, the frequency
of appearence of each strategies must be equal.
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Synthesis : example

Exponential tree

Two allocation strategies : boundary+ and boundary–

Random strategy choice

StrategyBase

boundary+32

boundary−64

???128

0 319 10 23

Begin End

32 51 60
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Experimentations

1 Influence of each LSEQ’s component

⇒ Synthetic documents.
⇒ High amount of insertions.
⇒ 3 editing behaviour : in the beginning, in the end, random.

2 Comparison with variable-size CRDT.

⇒ Real documents : Wikipedia.
⇒ 2 editing behaviour : in the beginning, in the end.
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Boundary
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Exponential tree
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Base doubling setup with base = 24+id.size and boundary = 10
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Strategy choice
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Round-Robin (RR) alternation of strategies boundary+ and boundary–
(base = 210 ; boundary = 10)
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LSEQ
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LSEQ randomly alternating boundary+ and boundary– and using the base
doubling (base = 24+id.size ; boundary = 10)
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Comparison with Logoot I
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Comparison with Logoot II

L LSEQ

id-length
avg 2.65 6.25
max 4 12

id-bit-length
avg 169.7 61.24
max 256 150

Numerical values of a page edited in the end.

L LSEQ

id-length
avg 2.69 5.29
max 5 8

id-bit-length
avg 172.25 51.99
max 320 84

Numerical values on front edited page.
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Synthesis : experiments

1 Each component contributes to LSEQ :

Exponential tree : sub-linear behaviour
Multiple strategies + choice : generic

2 Better than Logoot :

On documents edited in the end
On documents edited in the beginning
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Conclusion and Future Works

Proof : sub-linear space complexity.

n operations : uniform distribution ⇒ O(log n)
n operations : monotononic ⇒ O((log n)2)
n operations : worst-case ⇒ O(n2) ? ? ?

Proof : worst-case happens with a negligible probability

Concurrency effect
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