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. Contents of the talk

» Some directed algebraic topology, in the shared memory,
semaphore case: trace spaces

» A quick recap on fault-tolerants protocols for distributed
systems (here, immediate snapshot and layered executions
protocols a la Maurice Herlihy et al.)

» Links between the two approaches and future work
(ongoing work, with lots of inputs from Samuel Mimram,

Emmanuel Haucourt, Christine Tasson, Lisbeth Fajstrup, Martin
Raussen)

G0 Rist
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Context of this talk

e ~N

» We consider in this talk concurrent programs interacting
through shared memory (as an example)

processus

\ demande d'écritufe PX

= m
locations z X y
—

mémoire partagée

» Synchronisation:
» through semaphores (P for locking, V for unlocking), binary or
“counting”
» Or synchronisation through scan/update

Eric Goubault, CEA LIST, Ecole Polytechnique ~—37/68



Directed Algebraic Topology

Quick history
» “Progress graph” model of E. W. Dijkstra (1968)

» Applications to deadlock finding and correctness of distributed
databases (serializability), Yannakakis, Lipsky, Papadimitriou
etc. (1979-1985), Gunawardena (2 phase-locking protocol,
1994) etc.

» "“Higher-dimensional automata” as a model for concurrency,
Pratt/Van Glabbeek 1991, Goubault 1992, Raussen, Fajstrup,
Grandis, Gaucher, etc., applications to static analysis of
concurrent systems (state-space reduction)

(and many influences of other geometrical aspects of computer
science, “Squier's theorem” 1985, Univalent Foundations of
Voevodsky/Awodey 2009 etc.)

= an with (the classical) algebraic topological approach in DC?

Eric Goubault, CEA LIST, Ecole Polytechnique 4"/ 68



Geometry
“progress graphs” E.W.Dijkstra'68
T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

Forbidden

| H | |

T T T
Pa Pb Vb Va
“Continuous model”: x; = local time; dark grey region=forbidden!
see Algebraic Topology and Concurrency MFPS 1998/TCS 2006, L. Fajstrup, E.

Goubault, M. Raussen
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.. Execution paths

T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

are continuous

Vb+

Va+

Pa+

Pb-

Pa Pb Vb Va

Traces are continuous paths increasing in each coordinate: dipaths.

G List
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Deadlocks

Deadlock
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Unreachables

Unreachyble

+LBeA
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Classes of equivalent dipaths
up to dihomotopy

T

Vb

T1 gets a and b before T2 => a=2 and b=4
Va
T2 gets b and a before T1 => a=2 and b=g=2*p

Each of T1 and T2 gets a ressource Pa
=> Deadlock with a=2 and b=1 b=b-1

Pb
a=1 — - Tl
b Pa I+¢?Pb JI+?Vb Va

@® o
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Examples of geometric semantics

To each program p we associate a directed space of some sort
(d-space, stream etc.):

P,.VL|P,.Vy  PaPp.Vp. V4 Pp.Py VL.V P,.(V,.P,)*|P,.V,

€p €p
by by b,,
|\ J
CED List .
— Eric Goubault, CEA LIST, Ecole Polytechnique 10/ 68



Examples of PV semantics

P3.V5|P,. V4| P,V
(ka2 =2)

t1

to

P1. V5| P, V4| P,V
(ka=1)

t1

to

to

Eric Goubault, CEA LIST, Ecole Polytechnique
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More formally

(Basic definitions in directed algebraic topology

» Let X be a stream/d-space etc. (here we only consider a
po-space, i.e. a topological space X together with a partial order

<C X x X, closed in the product topology)
» p: | — X a continuous and increasing path from po-space
I = ([0,1], <) (standard order) to X is a directed path
» Define the path space P(X)(a,b) ={p: 1 — X
mod p(0) = a, p(1) = b, p is a directed path}
» A dihomotopy on P(X)(a, b) is a continuous map
H: 1 x 1 — X such that H; € P(X)(a, b) for all t € I.

| J

(Fact
\Schedules are dihomotopy classes of dipaths

G0 st
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Differences with classical AT

(Dihomotopy equivalence is finer than homotopy equivalence

t t t
| |

| [ |
to to to

(Pa.Va.Pb.Vb | Pb.Vb.Pa.Va, 3 maximal schedules) Different from:

t t t t
[ | [ |
[ | |
to to to to

(Pa.Va.Pb. Vb | Pa.Va.Pb.Vb, 4 maximal schedules)

cea—ﬁgr as topological spaces, they are homotopy equivalent!

Eric Goubault, CEA LIST, Ecole Polytechnique 137/ 68
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Differences with classical AT

(Pa.Pc.Va.Pb.Ve.Vb | Pa.Va.Pc.Ve.Pb.Vb | Pc.Ve (c: 2)

Directed homotopy is not classic
homotopy plus fixed extremities

A

bifurcagtion



. DC - case of the update-scan model

Update-scan model, very close to the PV model:

» Each process P; has a distinguished local variable x;

v

It can update the value of its "mirror” in global memory Xj;
(Xi, i=0,...,n—1) forms a partition of global memory

v

It can scan all of the global memory into its local memory

v

It can perform local computations...

Processes are supposed to do (update; computation; scan)* in
parallel

G0 st
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Decision tasks

Can we implement a function...given an “architecture” (faults?
shared memory / message passing, synchronous /
semi-synchronous / asynchronous etc.)?

.

s ™
Before

blah blah blah...
arghhh...

@@ @

After

Eric Goubault, CEA LIST, Ecole Polytechnique 16/ 68



Protocol complex

Each protocol on some architecture defines:
» a simplicial set (for all rounds r):

» vertices: sequence of “values” scanned at a given round r
» simplices: compound states at round r

» This is an operator on an input simplex

» A choice of model of computation entails some geometrical
properties of the protocol complex

Eric Goubault, CEA LIST, Ecole Polytechnique 17/ 68



One-round protocol simplicial set (2D)

( ° S S ° ]
0.10 1.11 0.11 1.01
PO SOlO PO P1 Pl SOlO

» First digit is the process number (identifying the local state)

» After the dot, for each round, we get a string of n bits, where
n is the number of processes involved (here just one round,
and n=2)

Eric Goubault, CEA LIST, Ecole Polytechnique 18/ 68



One-round protocol simplicial set (3D)

P runs alone P.Q.andR
“ run together
Pand Q Pand R
run alone run alone

Fi1G. 25. A one-round protocol complex.

.

How can we find such pictures?

G0 List
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What now?

(How can we make the link between the two approaches? )
» But where does the protocol complex comes from? The

different local states should come from different schedules of
execution

The higher dimensional simplexes in the protocol complexes
will correspond to distinct schedules (i.e. paths mod
dihomotopy classes)

» To be computed from the (geometric) semantics of some
“generic” scan/update program

|\

How can we generalize this to more intricate distributed models,
than scan/update?

e List
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Examples of scan/update semantics

Only “obstructions” are between scan and update:

5]
ROl
Sir M
RlO
U |
to
U So
\ J
@ st Eric Goubault, CEA LIST, Ecole Polytechnique 21"/ 68



Examples of scan/update semantics

Only “obstructions” are between scan and update:
ty
ROl
S5+ B
RlO
Us [ |
to t
Uo So 0
|\ J

In dimension n, the forbidden region consists of n crosses with
n — 1 orthogonal branches.

e Eric Goubault, CEA LIST, Ecole Polytechnique —21/68



For this talk - just po-spaces

Suppose given a program with n threadsp = polpi|...|pn-1
Under mild assumptions, the geometric semantics is of the form
-1
G = I"\|JR; R = ID,%
Example: i—0
5 Y0 % Yo
C=D List "

— Eric Goubault, CEA LIST, Ecole Polytechnique 22/ 68
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Trace spaces

(Formally
» Let X be a stream/d-space etc.

» Define the trace space T(X)(a, b) to be the path space
between a and b modulo continuous and increasing
reparametrizations

» We wish to study the homotopy type of T(X)(a, b)

» There is a homotopy equivalence between T(X)(a, b) and a
certain prodsimplicial complex (Martin Raussen), which can
be calculated combinatorially, on our simple semantics...

Eric Goubault, CEA LIST, Ecole Polytechnique 23/ 68



. Determining traces can be intricate!

. Px.Py.Pz.Vx.Pw.Vz.Vy.Vw | Pu.Pv.Px.Vu.Pz.Vv.Vx.Vz Py.Pw.Vy.Pu.Vw.Pv.Vu.Vv

Eric Goubault, CEA LIST, Ecole Polytechnique 24/ 68



. In fact...

» Binary semaphores are “easy” (trace spaces are discrete!)

> In general (with counting semaphores), recent result by
Krzysztof Ziemariski (unpublished, 2013):
For each finite simplicial set S, there exists a finite
PV-program P such that the trace space of P (from
beginning to end) is homotopy equivalent to S

» So we may have the complexity of general homotopy types
even with a simple computational model such as PV...

G0 st
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Determining trace spaces,
combinatorially

N

The main idea is to extend the forbidden cubes downwards in
various directions and look whether there is a path from b to e in
the resulting space.

n | ]
I | _

to to to

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
_boolean matrices M.
e List

Eric Goubault, CEA LIST, Ecole Polytechnique 26 / 68




The index poset

p
M i boolean matrices with / rows and n columns.

Xum: space obtained by extending
for every (/,j) such that M(i,j) =1
the forbidden cube i downwards
in every direction other than j

Lok

10 01
10 10
ceﬂ alive alive dead

_ Eric_Goubault, CEA_LIST, Ecole Polytechnique —27.//68




The index poset, combinatorially

P,.V,.Pp.Vi

t

to

to

P,.V,.Pp. Vi,

to

to

P..V,.Pp.Vy

t
t@
to to

0 0O 1 00 0 01 0 0O
0 0O 0 01 1 00 1 11
alive alive alive dead
Eric Goubault, CEA LIST, Ecole Polytechnique 28/ 68



The index poset

4 .
Alive and dead?
Important matrices are

» the dead poset D(X) = {M € M,Cm / V(M) =1}.

> the index poset C(X) = {M € MF / W(M) =0} (the alive
matrices).

» consider the entrywise ordering (0 < 1) on matrices.

(General results by Martin Raussen:

D(X) ~ C(X) ~ homotopy classes of traces

(and even more, but let us just start with that!)
.

G0 List
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The dead poset

(Proposition
A matrix M € Mf, is in D(X) iff it satisfies

[, 3 : M@(i.))=1 i ; i’
V(i,j) € [0:I[x[0: nl, (1,)) = X <i’er??l(r}\4)yj

where R(M): indexes of non-null rows of M.

p
Example
1

1
N -
xi (0 1) X =1<2=min(y?, yi)
-yl - 1 0 X0—2<3—m|n(y07.y0)

0
X1

to
001 0.1
@Llixt Xo X5 Yo Yo

_“" Eric Goubault, CEA LIST, Ecole Polytechnique 30" )BB




=.. Example, scan/update in dimension 2

(3 dead matrices |
t1 t ty
0
|
to to to
11 00 10
0 0 11 01

ric Goubault, CEA LIST, Ecole Polytechnique



The index poset

fProposition
LA matrix M is in C(X) iff for every N € D(X), N £ M.

—L

(Remark
N £ M: there exists (i, j) s.t. N(i,j) =1 and M(i,j) = 0.

(Remark
Since C(X) is downward closed it will be enough to compute the
set Cmax(X) of maximal alive matrices.

e—_ Eric Goubault, CEA LIST, Ecole Polytechnique 32/ 68



Connected components

[ Definition

Two matrices M and N are connected when M A N does not
contain any null row. (M A N: pointwise min of M and N)

.

(Proposition
The connected components of C(X) are in bijection with
khomotopy classes of traces b — e in X.

CE0 List

_
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Example

(Scan/update in dimension 2 - 1 round

us|us

generates a trace space made of 3 distinct points:

e Eric Goubault, CEA LIST, Ecole Polytechnique 34/ 68



Some combinatorial considerations

N

Hypergraph transversal

» An hypergraph H = (V, E) consists of a set V of vertices and
a set E of edges, where an edge is a subset of V

» A transversal T of H is a subset of V such that T Ne # () for
every edge e € E.

J

N

(D(X) = hypergraph H:
» vertices: [0: /[x[0: n[
» hyperedges: {(i,j) / D(i,j) =1} (D is a matrix in D(X))

The sets {(i,j) / M(i,j) = 0}, where M is a maximal matrix
of C(X), correspond to minimal transversals (wrt inclusion order)
of H.

=0 List .
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Some combinatorial considerations

First dead matrix:
t1

to

Eric Goubault, CEA LIST, Ecole Polytechnique



Some combinatorial considerations

Second dead matrix:
t

to

Eric/Goubault CEA LISTEcol Polytechmoiie ity



Some combinatorial considerations

" Third and last (minimal) dead |
matrix:
t

Eric Goubault, CEA LIST, Ecole Polytechnique 35/ 68



— Some combinatorial considerations

First (maximal) alive matrix:
t

Eric Goubault, CEA LIST, Ecole Polytechnigue ~ -35/68




Some combinatorial considerations

Second alive matrix;
t1

to

Eric/Goubault CEA LISTEcol Polytechmoiie ity



Some combinatorial considerations

s ~

Third (and last) maximal alive

matrix:
t1

Eric Goubault, CEA LIST, Ecole Polytechnique 35/ 68



What is the meaning of traces?

t t
[ | | |
[ | | [ |
to to
1 0 01 01
Go) (1) (9
My M> M3

Eric Goubault, CEA LIST, Ecole Polytechnique
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What is the meaning of traces?

t t t

s . = m
u o . to m to
1 0 01 01
1 0 01 1 0
M Mo M3

» M;i: P; does its scan before Py does its update

» My: P; does not know the current value of Py but Py does

— Eric Goubault, CEA LIST, Ecole Polytechnique 36/ 68



What is the meaning of traces?

> Mli
> MQZ
> My:
> Mo:

EQL

ho 1) (o

M1 M2 M3
P1 does its scan before Py does its update
Py does its scan before P; does its update
P1 does not know the current value of Py but Py does

Py does not know the current value of P; but P; does

Eric Goubault, CEA LIST, Ecole Polytechnique 36 /68



What is the meaning of traces?

. P1 does its scan before Py does its update

. Py does its scan before P; does its update

: Pp and P; do update, then do there scan together

. P1 does not know the current value of Py but Py does
. Py does not know the current value of P; but P; does

: Pp and Py know their values

t t t
s | s |'m
[ | u u [ |
to to to
u S u s

9 k) €

My Mo Ms

—

Eric Goubault, CEA LIST, Ecole Polytechnique 36/ 68



Link with the protocol complex

(o)

Protocol complex:

1.01 ——0.11 1.11 0.10

(1.01 (resp. 0.10) means Py (resp. Pg) knows only its own value;
1.11 (resp. 0.11) means Py (resp. Py) knows all values)

CE0 List

e
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Link with the protocol complex

e ~

69 6 €

My

Protocol complex:

1.01 -M;>0.11 1.11 0.10

— Eric Goubault, CEA LIST, Ecole Polytechnique 37/ 68



Link with the protocol complex

t t t
| |
[ | | [ |
to to to
10 01 01
Go (1) (o
Ml M3

Protocol complex:

1.01 -M;>0.11 -M3>1.11 ——0.10
| Ms differs from M, by just a 1 (connected)

— Eric Goubault, CEA LIST, Ecole Polytechnique 37/ 68



Link with the protocol complex

e ™\

. B, DA

1 0 0 1 01
1 0 0 1 10
My Mo M3

Protocol complex:

1.01 -My>0.11 -M3>1.11 -M>> 0.10
Ms differs from M by just a 1 (connected)

— Eric Goubault, CEA LIST, Ecole Polytechnique 37/ 68



This is actually the minimal
transversal hypergraph!

-

(vertices are indexes in the matrices, hitting sets are hyper-edges):

] h,
oo w0 () (1 o)

My Mo M

CE0 List
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More rounds? clean-memory/layered
immediate snapshot

ty
s [ |
u |
s |
u [ |
u s us
Iterated subdivision (fractal) of the protocol complex (round 1):
1.01 -M;>0.11 -M3>1.11 -M»> 0.10
|\ J
0 Hist . ,
_“"W—”MM Eric Goubault, CEA LIST, Ecole Polytechnique 39/ 68



Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —> 0.1111) 1.0111 0.1101 1.1101
0.0101 1.1111 0.0111 1.1101 0.1111
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Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —1 1> o0.1111) —]— 1.0111 —]— 0.1101 ——> 1.1101

|

0.0101 1.1111 0.0111 1.1101 0.1111

Eric Goubault, CEA LIST, Ecole Polytechnique 40/ 68



Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —1 1> 0.1111) =13 1.0111 —]— 0.1101 —— 1.1101

|

0.0101 1.1111 0.0111 1.1101 0.1111

‘ C&] List
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Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —1 1> 0.1111) =13 1.0111 —1 2= 0.1101 —— 1.1101

|

0.0101 1.1111 0.0111 1.1101 0.1111

‘ C&] List
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Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —> 0.1111) 1.0111 0.1101 —31> 1.1101

0.0101 1.1111 0.0111 1.1101 '63— 0.1111
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Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —> 0.1111) 1.0111 0.1101 —31> 1.1101
3¢3
0.0101 1.1111 0.0111 1.1101 <—3— 0.1111

‘ C&] List
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Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —> 0.1111) 1.0111 0.1101 —31> 1.1101
33
0.0101 1.1111 0.0111 1.1101 <32— 0.1111

‘ C&] List
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Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —> 0.1111) 1.0111 0.1101 1.1101

0.0101 <—2— 1.1111 <—2— 0.0111 <2]— 1.1101 <— 0.1111

Eric Goubault, CEA LIST, Ecole Polytechnique 40/ 68



Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —> 0.1111) 1.0111 0.1101 1.1101

0.0101 <—2— 1.1111 <23— 0.0111 <2]— 1.1101 =<— 0.1111

Eric Goubault, CEA LIST, Ecole Polytechnique 40/ 68



Clean-memory model

ty

to

Iterated subdivision (fractal) of the protocol complex (round 2):

1.0101 —> 0.1111) 1.0111 0.1101 1.1101

0.0101 <22— 1.1111 <23— 0.0111 <2]1— 1.1101 =<— 0.1111

‘ C&] List

Eric Goubault, CEA LIST, Ecole Polytechnique 40/ 68




.. Hence

[ Theorem

L/

The clean memory model for n processes at round r produces a
subdivided n simplex (up to some “flares” which do not affect
(n — 1)-connectedness)

(The flares are ruled out, classically, by the layered execution
requirement)

> Clear relation with underlying geometric semantics
» All is fine, but is there a new result here? Not yet...

Eric Goubault, CEA LIST, Ecole Polytechnique 41/ 68




Example: same-memory model

Much more complicated! But fits in our framework perfectly
ty
| |
| |
| |
| |
to
& J
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Example: same-memory model

Much more complicated! But fits in our framework perfectly

ty

CED List ‘
Eric Goubault, CEA LIST, Ecole Polytechnique 42/ 68



Example: same-memory model

Much more complicated! But fits in our framework perfectly

to

— each block (1 unfolding) creates an (n — 1)-connected complex
= glued under some recurrence relation

CE0 List

& —
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Example: same-memory model

Much more complicated! But fits in our framework perfectly

to

— each block (1 unfolding) creates an (n — 1)-connected complex
— glued under some recurrence relation
= whose relations make it a contractible scheme for pasting blocks)

Eric Goubault, CEA LIST, Ecole Polytechnique 42/ 68



Example: same-memory model

Much more complicated! But fits in our framework perfectly

to

— each block (1 unfolding) creates an (n — 1)-connected complex
— glued under some recurrence relation

— whose relations make it a contractible scheme for pasting blocks
— hence (nerve lemma), creates an (n — 1)-connected protocol
complex! (not previously described, as this does not create an

C&Lm‘ated SUdeVIded %Irirp(!?)!lggﬁ)t, CEA LIST, Ecole Polytechnique 42 ﬁS




In general...: interval posets and
) schedules

N

‘Interval posets
> Let S be a set of closed intervals in R (i.e. of elements of the
form [a, b], a, b in R)

We define the partial order:

v

[a,b] < [c,d] & b<c

v

(5,<) is called an interval poset

v

Are very well described, combinatorially

v

For instance Fishburn's theorem (equivalence with (2+2)-free
posets)

v

And number of such posets on n elements is well known,
example: 1,3,19,207,3451,. .. (this is A079144 on OEIS)

\

G0 st
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Theorem

The dihomotopy classes of maximal paths, for the 1-round
scan/update model for n processes, is in bijection with the interval
posets on n elements.

The bijection associates to each dihomotopy class [p] the set of
intervals in [0, 1]

(pomi)  ([ui,sil)

J

Proof relies on the characterization of dihomotopy classes through
alive matrices, hence dead matrices - recall condition on being
dead, as some interval inequalities!

G0 st
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Example, in dimension 2

( ~
ty ty t1
S /101 )] 0]
u [ | u [ | u m
a5t oy 5 o o s o
[u2, 8] < [u1, s1] [u, s1], [u2, 5] [u2, 8] < [u1, s1]
- Y,
e st ‘ ,
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What is the structure of the protocol
) complex now?

(Extension order on posets
Let (51 <1) and (S2,<2) be two partial order on some sets
5 CSy. We say that <1=<» ifVs,t €51, s<1t=s<ot.

\When 51 = 5;, this is the linearization order.

"Importance of the extension order for our purpose

Let <7 and <5 be interval orders on the same set of cardinal
n+ 1. If <q is a linearization of <, then the corresponding
n-simplexes share a common (n — 1) face.

In fact, the face poset of the protocol complex is given by the
extension order on interval posets up to n elements

Eric Goubault, CEA LIST, Ecole Polytechnique 46 / 68



Structure of the protocol complex

(Corollary ]
The protocol complex for scan/update in dimension n, for one
round, is homotopy equivalent to the order complex for the
extension order on interval posets up to n elements.

(since the order complex of the face poset is just the barycentric
subdivision)

[ Theorem )
The protocol complex for the scan/update model, in dimension n,
for one round, is an (n — 1)-connected simplicial set. It is a
subdivision of A[n] plus some extra contractible “flares”.

The flares are ruled out, classically, by the layered execution
requirement

G0 st
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Corresponding to the labelled interval
posets on 3 elements (19 of them)

((2,2,2)
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Corresponding to the labelled interval
posets on 3 elements (19 of them)

((3,2,1)

O—T |V —O
(@)
(9]
L
oy
(9]
o
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Corresponding to the labelled interval
posets on 3 elements (19 of them)

((3,3,0) )
b b a c a
! | |
? ‘ ‘la c c a b c b
c b b c | a c | a b
! | N/ N7 N S
b a c a a b c
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Corresponding to the labelled interval
posets on 3 elements (19 of them)

((4,11) )
b b i i i
? c ‘la c c a b c b
c b b c | a c | a b
; | N/ N NS
b a c a a b c
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Corresponding to the labelled interval
posets on 3 elements (19 of them)

-
b b a c a
! | |
? c ‘la c c a b c b
IC b b c a\ /C a b
| N S N/
b a c a a b c
c b
' [
b c
| |
a a
c b a
| | | !
? a ‘ g
b (I_- b c
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Example, in dimension 3

Hasse diagram of the corre-
sponding interval poset:

[o,s0] [u1,s1] [w2, 5]

(let us call a = [ug, %], b =
[u1,s1], ¢ = [u2, 5] for the se-
quel)
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Example: in dimension 3 (the 18 other
schedules)

e N




Example: in dimension 3 (the 18 other
schedules)

e N




Example: in dimension 3 (the 18 other
schedules)

e N




=

Logical interpretation

~

p
Each interval can be interpreted in terms of “knowledge”, hence
the structure of the protocol complex...
|\ J
b a c
a b c | ' I
{0.111,1.111,2.111} a ¢ b c a b
{0.101,1.111,2.101} {0.111,1.011,2.011} {0.110,1.110,2.111}
cl? ¢ b b c
| N/
c b b a c a a
{0.111,1.011,2.011} {0.110,1.110,2.111} {0.101,1.111,2.101} {0.100,1.111,2.111}
a c a b a b
N/ N/ 7N VRN
b c b C a C
{0.111,1.010,2.111} {0.111,1.111,2.001} {0.111,1.011,2.011} {0.101,1.111,2.101}
|\ J
o ki
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Construction of the protocol complex

h 4
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Construction of the protocol complex

These are ruled out under the layered execution model
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Construction of the protocol complex
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Construction of the protocol complex
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Construction of the protocol complex

CE0 List

_ O
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Trace spaces: prodsimplicial structure

e N

» A prod-simplicial space is just a space made up of simplices,
and products of simplices, glued together along their faces
(natural generalization of cubical and simplicial sets)
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Trace spaces: prodsimplicial structure

» A prod-simplicial space is just a space made up of simplices,
and products of simplices, glued together along their faces
(natural generalization of cubical and simplicial sets)

> Example:

a
El .
€%/ 123}
|\ J
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The prodsimplicial structure of trace
spaces

Each matrix of C represents a prod-simplex, product of one
n-simplex per line, n=number of 1 per line minus 1...

Recall:

~

|
to

0 1
=3 o)

kproduct of 2 O-simplices = point!

CE0 List

_
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The prodsimplicial structure of trace
spaces

Each matrix of C represents a prod-simplex, product of one
n-simplex per line, n=number of 1 per line minus 1...

> D(X)(0,1) = {(111)}

// » C(X)(0,1) = {(110), (101), (011)}

>

(011) (101)

(110)

G List
——— Eric Goubault, CEA LIST, Ecole Polytechnique 63/ 68



The prodsimplicial structure of trace
spaces

Each matrix of C represents a prod-simplex, product of one
n-simplex per line, n=number of 1 per line minus 1...

» C(X)(0,1) = {(110), (101), (011)}

/ » and common faces are meet of
matrices
Y 0a1)

(011) (101)
(0¥ 0)
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The prodsimplicial structure of trace

spaces

Each matrix of C represents a prod-simplex, product of one
n-simplex per line, n=number of 1 per line minus 1...

/ » connected, not simply-connected
(reflecting the fact that

m(X) = Z)

» C(X)(0,1) = {(110), (101), (011)}

N

Eric Goubault, CEA LIST, Ecole Polytechnique
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A more intricate example

Dy
) =
0
0
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A more intricate example

» C(X)(0,1)

(o) (o))

011, \(101) (011, \(101
(110) y (110)
J
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A more intricate example

(m1is Z x Z)




In short: theorems

(Theorem

The prodsimplicial set corresponding to the scan/update model, in
any dimension n, for one round, is discrete. Its cardinal is the
\number of interval posets on n elements.

Compare with:

(Theorem

The protocol complex for the scan/update model, in dimension n,
for one round, is an (n — 1)-connected simplicial set. It is a
 subdivision of A[n] plus some extra contractible “flares”.
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In short: conjecture

(Conjectural construction of protocol complexes

The protocol complex is homotopy equivalent to the transversal
hypergraph made of dead matrices (a hypergraph is in particular a
simplicial set).

For n = 2 we saw that; for n = 3, the transversal hypergraph is a
11 dimensional simplicial set; for any n it is of dimension
n(n—1)% —1.

Sort of duality between prodsimplicial representation and the
\protocol complex one?

G0 st
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Ced List

Conclusion and future work

Lots of experiments and lots of mathematics to be
investigated yet on trace spaces...

Applications to more subtle (and less combinatorial) models
for protocols, in particular the “same memory model”, and
more intricate synchronisation primitives (test&set, fetch&add
etc.)

Extension to randomized algorithms: random simplicial sets!
(account for possibility of consensus)

Logical interpretation of these 2 frameworks, simplicial, and
directed

etc.
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Thanks for your attention!

http://acat.lix.polytechnique.fr
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