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Synchronizer Definition

Consider a message-passing network of N fault-free
processes
Described by a strongly connected digraph
The message delay on every link is constant
Processes run a wait-for-all synchronizer
Process pi sends its initial message at time Ti

What’s the time behavior of this system?
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messages are sent at time Ti = 0
Pick some process pi

Times at which pi sends
messages:
0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13 . . .
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Recursion Formula

Recursion:

ti(n + 1) = max
j→i

tj(n) + d(j, i)

with ti(0) = Ti and d(j, i) = message delay from pj to pi

ti(n) = greatest weight of walks of length n ending in i
“max-plus” recursion
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Max-Plus Linearity

Sequence of vectors x(n) defined by a recursion of the form

xi(n + 1) = max
j

(
xj(n) + Ai,j

)
where Ai,j = −∞ is possible
Solution of recursion is x(n) = A⊗n ⊗ x(0)
These systems are linear if we consider the matrix
multiplication

(A⊗ B)i,j = max
k

(
Ai,k + Bk,j

)
Fact:

(
A⊗n)

i,j = largest length n weight from i to j
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One cycle with mean weight = 1
Another with mean weight
= 4/3
The higher mean weight
dominates
Limit-average of time between
messages at all processes: 4/3
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Maximum Weights Between Two Nodes

Periodic with “linear defect”:
a(n + p) = a(n) + p · λ
Fact: All these sequences become periodic if the graph is
strongly connected. (Cohen et al. ’83)
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Full Reversal Algorithm [Gafni & Bertsekas, 1981]

Input: oriented connected graph G0 and a subset D of
nodes
FR rule: a sink not in D reverses all its (incoming) links
Execution: discrete time base T = N

Greedy execution: at every time step, all nodes able to
apply the FR rule do so
Work vector:
wi(t) = #times that node i applies the FR rule up to time t
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Full Reversal Algorithm [Gafni & Bertsekas, 1981]

Theorem (Gafni & Bertsekas, 1981)

In every greedy execution, the work vector w is
eventually periodic, i.e., there are p ∈ T and ω ∈N

such that

∃t0, ∀i ∈ V(G), ∀t ≥ t0, wi(t + p) = wi(t) + ω

Furthermore, if D 6= ∅, then every execution
terminates, i.e., p = 1, ω = 0.

Applications: routing, leader election, resource allocation, . . .
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Full Reversal is Min-Plus Linear

Theorem (Charron-Bost, Függer, Welch, Widder
2011)

The work vector w of a greedy FR execution fulfills a
min-plus recursion.
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Full Reversal is Min-Plus Linear

Proof.

i j i j
1

0

i ∈ D: i i 0
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Applications of Max-Plus

Other systems with a max-plus recursion include:
Transportation networks (train schedules, . . . )

Manufacturing plants

Cyclic scheduling

Timed event graphs

Our bounds give design guidelines for small transient phases,
because they include graph parameters.
E.g., O(N) if the support is a tree.
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The Lengths Between Two Nodes

start

end

Pick two nodes in a directed
graph
Form the following sequence: for
every n, write “1” if there is a
walk between the nodes that has
length n, and write “0”
otherwise.
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The Lengths Between Two Nodes

start

end

Let’s start at n = 0
0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, . . .

Fact: This sequence becomes
periodic.
Main Question: How long is the
transient phase?
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The Lengths Between Two Nodes

start

end

First Question: What is the
period?
Every cycle you meet along the
way adds a “+L” pattern,
where L is its length.
Example: L = 3
0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, . . .
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The Lengths Between Two Nodes

start

end

If strongly connected:
X + ∑

C
kC · LC

Candidate for period (think
X = 0):
GCD of cycle lengths (Bézout)
Indeed, period = GCD
(“cyclicity”)
Fact: The transient of an
eventually periodic sequence is
independent of the considered
period.
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Wielandt’s Bound

index of a graph = largest transient phase between two
nodes
N = number of nodes in the graph

Theorem (Wielandt; Math. Z. ’50 / Schwarz; Cz. Math. J. ’70)

The index of a strongly connected digraph is at most (N− 1)2 + 1.
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Bounds Including Graph Parameters

Dulmage and Medelsohn (Illinois J. Math. ’64):
included girth g = shortest cycle length
Schwarz (Cz. Math. J. ’70):
included cyclicity γ = GCD of cycle lengths

Theorem (Kim; LAA ’79)

The index of a strongly connected digraph is at most
N + g ·

(⌊
N
γ

⌋
− 2
)

.
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Nodes on Maximum Mean Cycles

Theorem (Merlet, N., Schneider, Sergeev, 2013)

Almost all bounds on the index of unweighted digraphs extend to
weighted digraphs for the transients of nodes on maximum mean
weight cycles.
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Previous Transience Bounds

Even and Rajsbaum (STOC ’90)

transience bound for an application (network synchronizer)
careful study of the proof gives a more general bound
in their special case: O(N3)

Hartmann and Arguelles (Math. Oper. Res. ’99)

of the form max
{

B′c , 2N2}
inherently quadratic, i.e., Ω(N2)

Bouillard and Gaujal (INRIA RR ’00)

worst case: exponential in N
can also be linear
Akian et al. ’05 gave a refinement
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Critical Cycles

A closed walk is critical if it has maximum
weight-to-length ratio λ.
Subgraph induced by critical closed walks:
critical subgraph
Fact: Every closed walk formed out of edges of critical
walks (= in the critical subgraph) is also critical.
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By subtracting λ from all edge
weights:
WLOG λ = 0, i.e., the sequence is
periodic without linear defect
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Critical Bound

large small

nearly
crit.

crit.

∆ = largest weight
δ = smallest weight
λnc = largest weight-to-length
ratio outside of critical subgraph
‖x(0)‖ = maximum difference
between entries in x(0)

Lemma
For n ≥ Bc, every length n maximum weight walk visits the critical
subgraph.
Always: Bc ≤ max

{
N ,
(
‖x(0)‖+ (N− 1) · (∆− δ)

)
/(λ− λnc)

}
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Realizers
π = LCM of cycle lengths

A walk W̃ between the two nodes is a B-realizer for node i if it
has maximum weight among all walks W with the following
properties:

W starts from node i
`(W) ≥ B
`(W) ≡ `(W̃) (mod π)

Lemma
If, for every attainable n ≥ B and every i, there exists a B-realizer of
length n, then B is an upper bound on the length of the transient
phase.
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Proof Strategy

Given: attainable n

1 Let W be a B-realizer of length congruent to n.
2 Critical bound: If B ≥ Bc then W visits a critical node k.
3 Walk reduction: Choose a divisor d of π. Remove critical

subcycles from W until reduced walk Ŵ is short enough,
but still `(Ŵ) ≡ `(W) (mod d) and contains node k.

4 Pumping: If n ≥ Bd we can add critical cycles at k to Ŵ
until its length is equal to n. The new walk is still a realizer,
because the weight did not change.

5 B = max{Bc, Bd}
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Walk Reduction
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Length of Reduced Walk

Lemma
Every collection of d integers contains a non-empty subcollection
whose sum is divisible by d.

⇒ `(Ŵ) ≤ (d− 1) ·N + (d + 1) · (N− 1)
= (d− 1) + 2d · (N− 1)
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Explorative Bound: d = γ(H)

i

k

Ŵ

H
H = k’s critical s.c.c.
Choose d = γ(H) = cyclicity of H:
l(Ŵ) ≤ (γ(H)− 1) + 2γ(H) · (N− 1)
γ̂ = largest cyclicity of critical s.c.c.’s
ˆind = largest index of critical s.c.c.’s

Theorem (Charron-Bost, Függer, N.)

The length of the transient phase is at most
max

{
Bc , (γ̂− 1) + 2γ̂ · (N− 1) + ˆind

}
.



Problem Statement Transience Bounds

Repetitive Bound: d = g(H)

i

k

Ŵ

C

H = k’s critical s.c.c.
By repeating a connecting closed
walk in H: WLOG k lies on a critical
cycle of length g(H).
Choose d = g(H) = girth of H:
l(Ŵ) ≤ (g(H)− 1) + 2g(H) · (N− 1)
ĝ = largest girth of critical s.c.c.’s

Theorem (Charron-Bost, Függer, N.)

The length of the transient phase is at most
max

{
Bc , (ĝ− 1) + 2ĝ · (N− 1)

}
.
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Extensions

In the critical bound: separation line between the interior
and exterior of the critical subgraph
Compare critical subgraph to exterior
Merlet, N., Sergeev: Make exterior graph smaller, bigger
“region of influence” of critical subgraph
Better “critical bound” with the rest of the bound
untouched
Includes more graph parameters
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