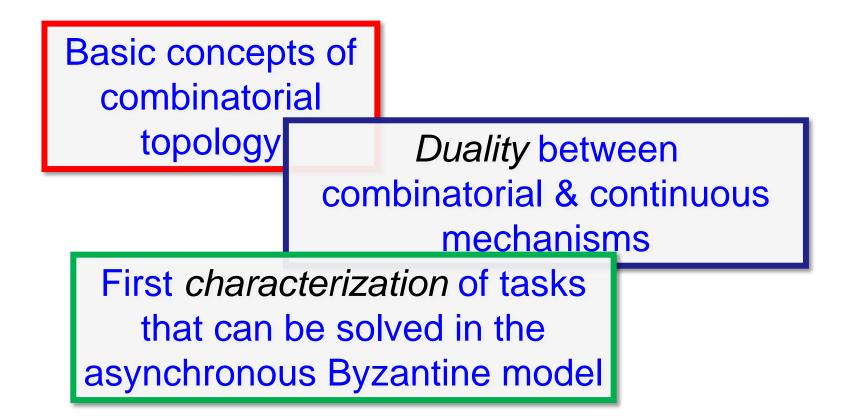
# The Topology of Asynchronous Byzantine Colorless Tasks

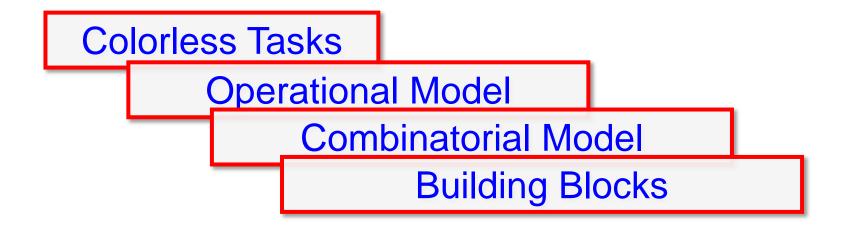
Joint with Hammurabi Mendes Christine Tasson



# Overview

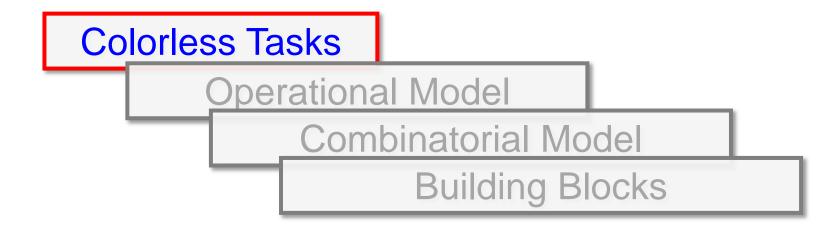


# Road Map

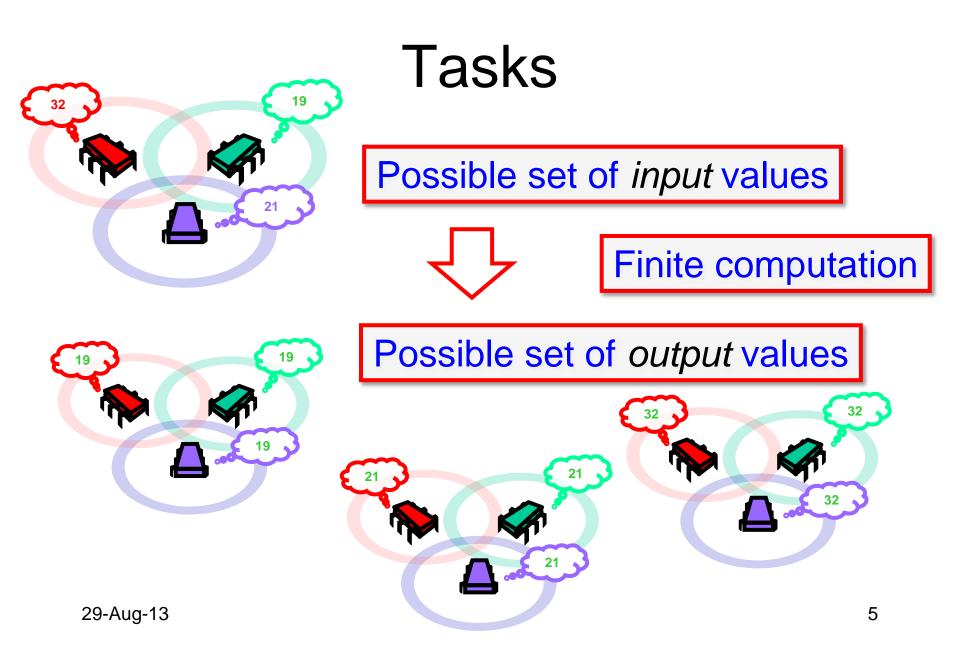


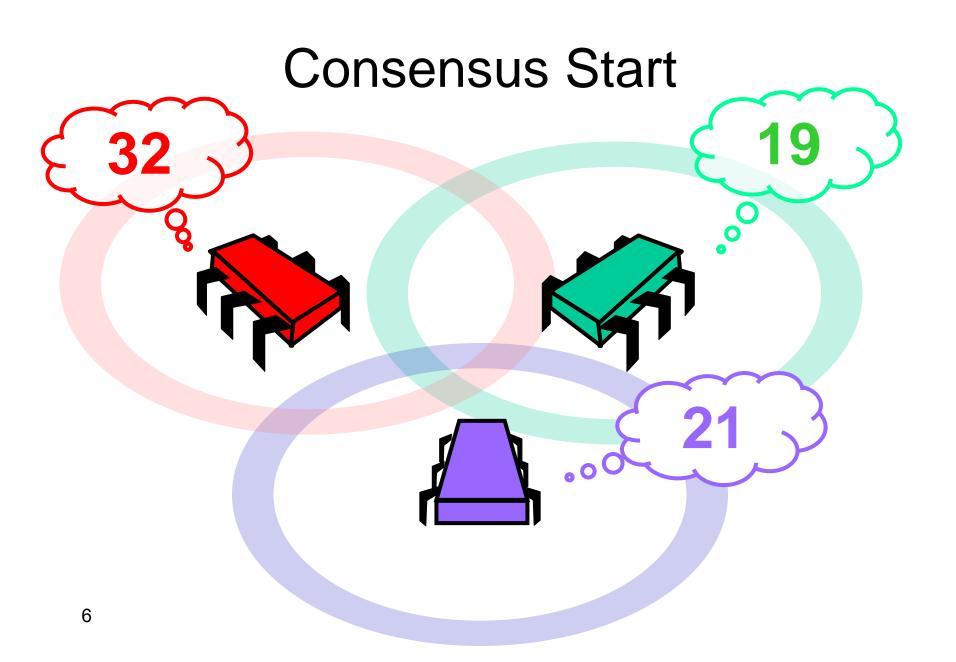
Crash Failure Solvability Byzantine Failure Solvability

# Road Map

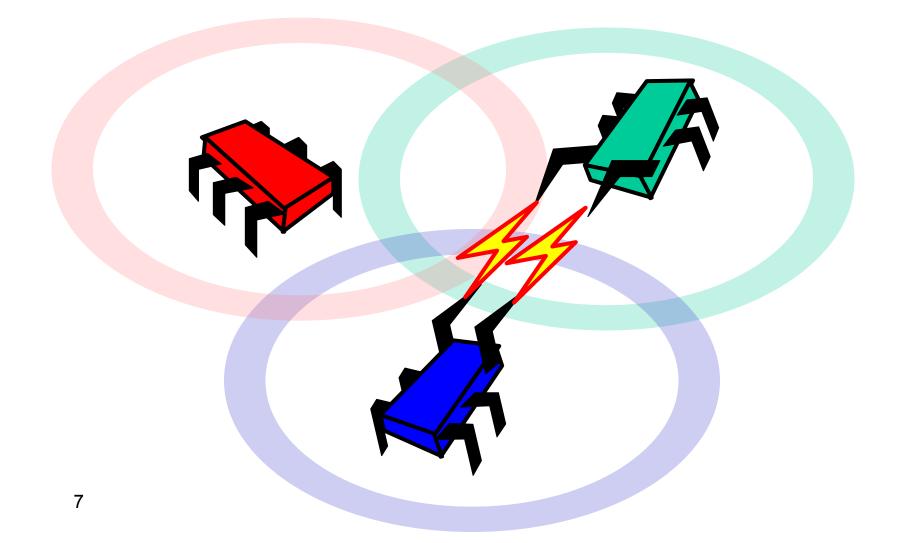


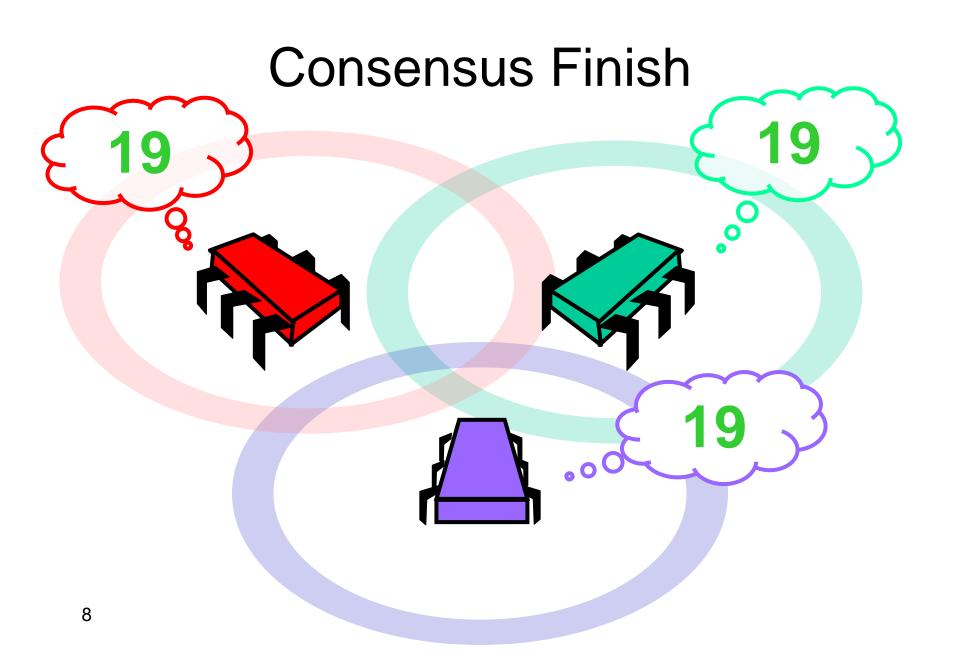
Crash Failure Solvability Byzantine Failure Solvability

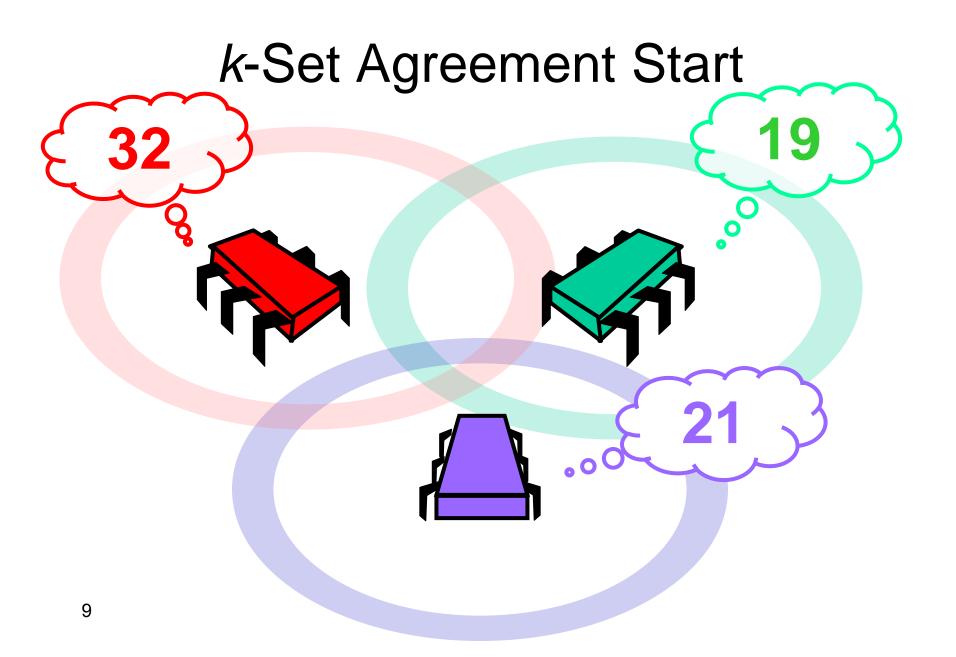




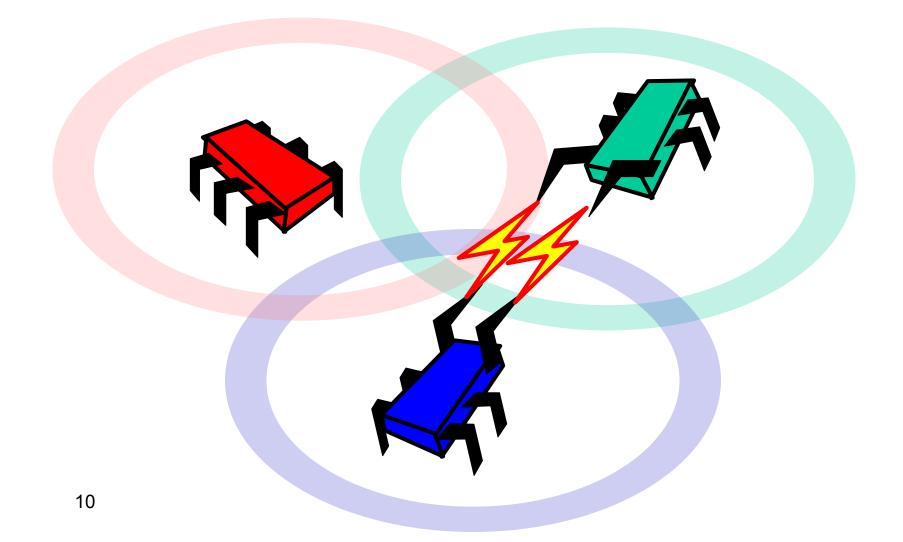
### Communication

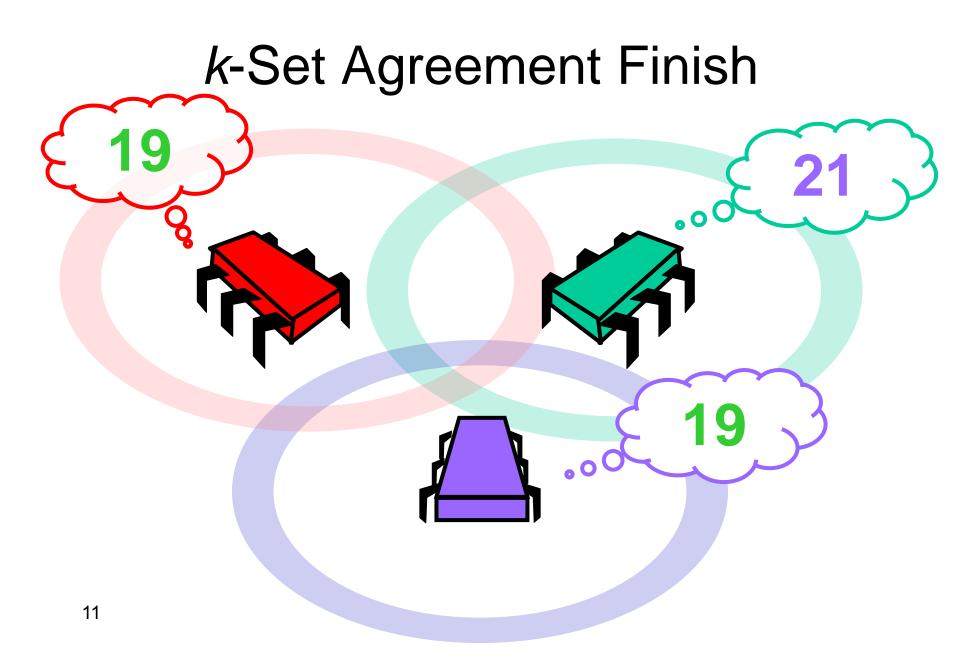


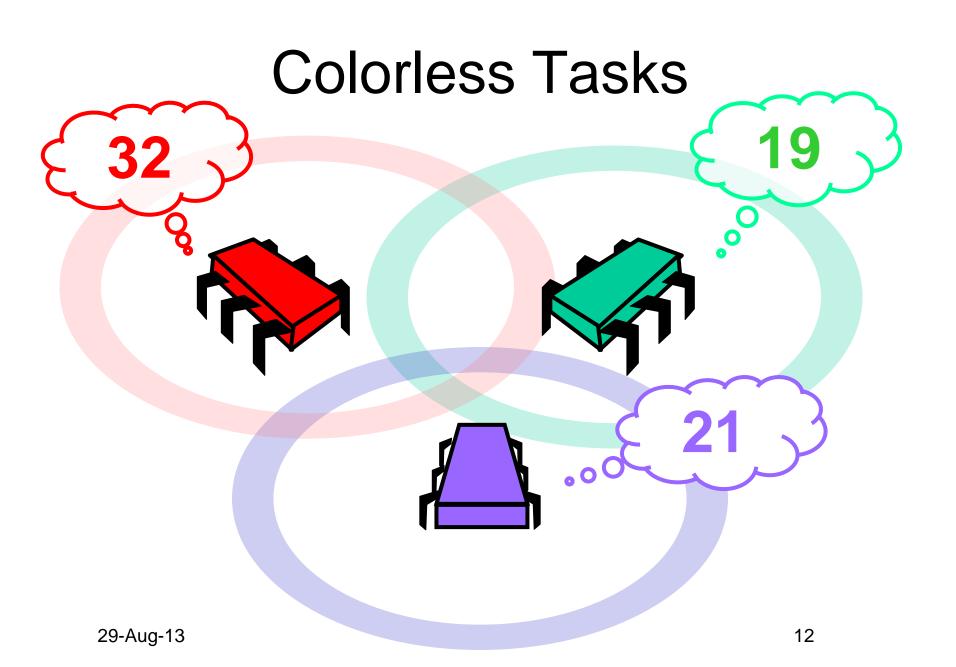


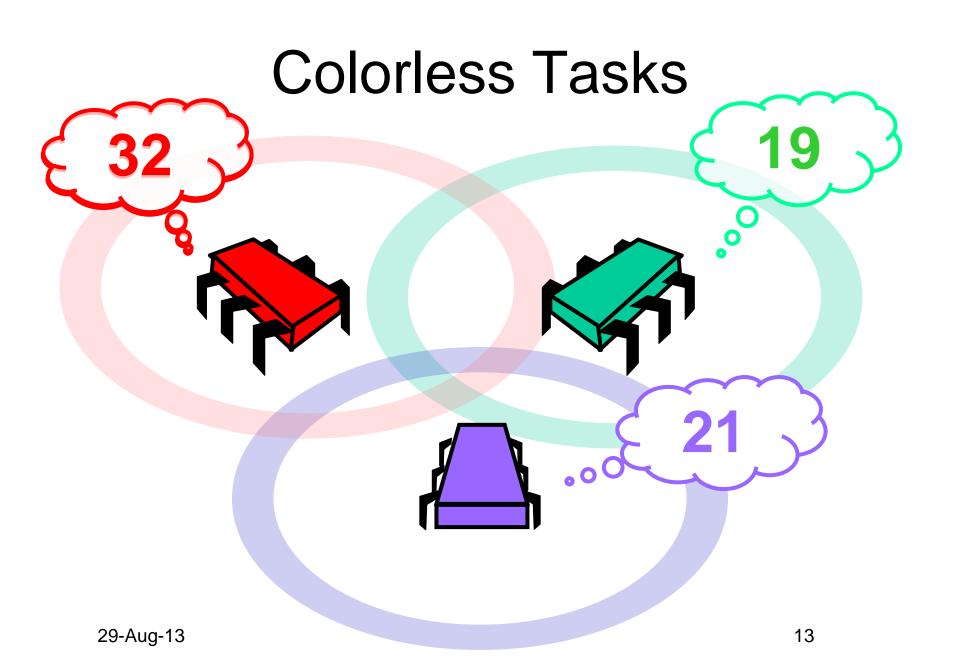


### Communication









### **Colorless Tasks**

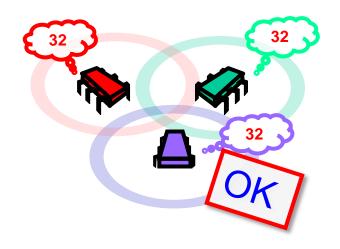
The set of input values ...

determines the set of output values.

Number and identities irrelevant...

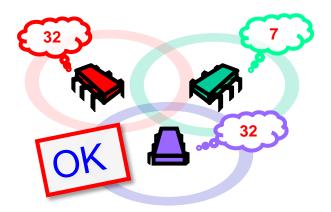
for both input and output values

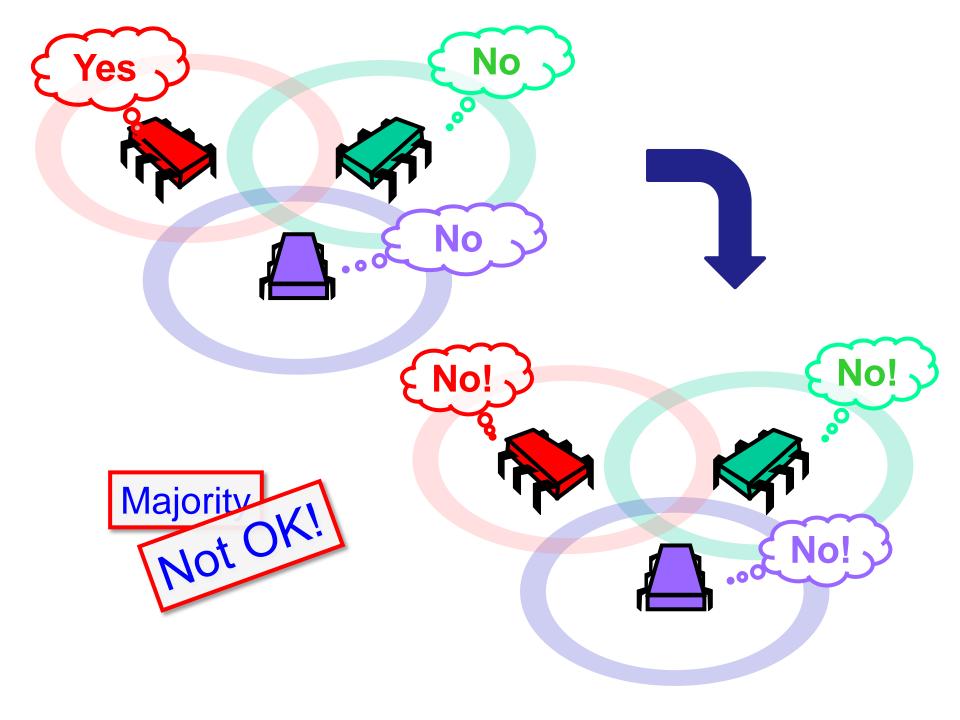
### Examples



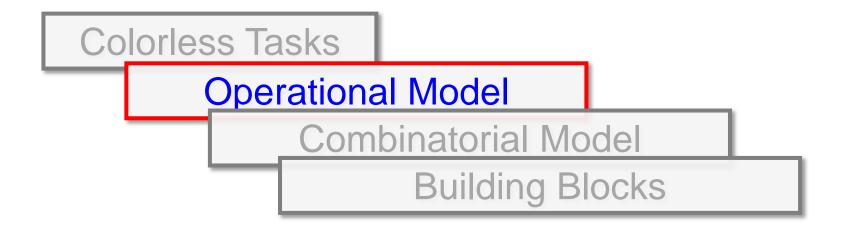








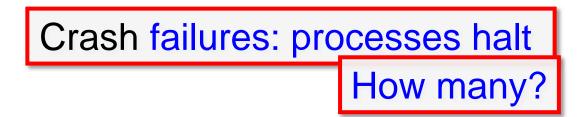
# Road Map



#### Crash Failure Solvability Byzantine Failure Solvability

#### Failures





29-Aug-13

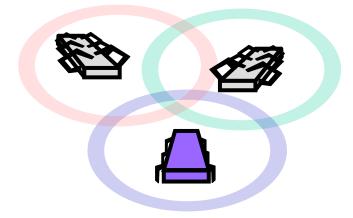
#### Failures



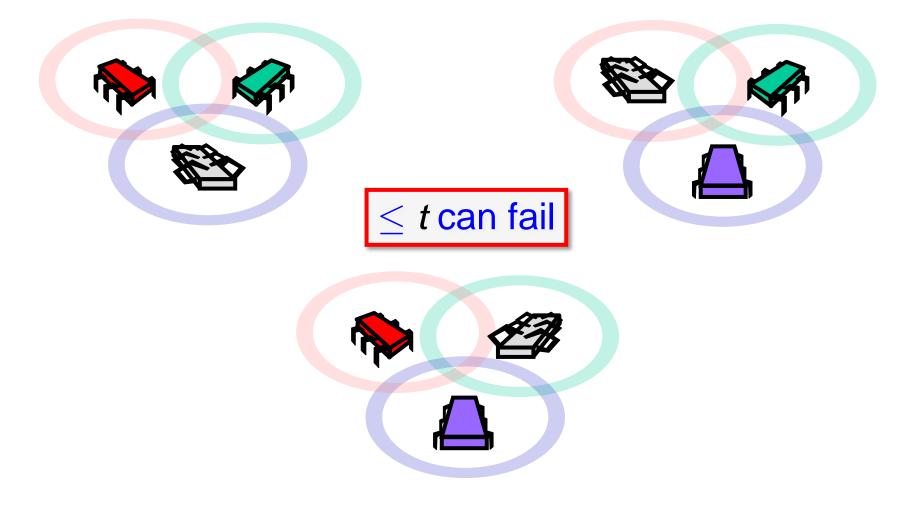


#### **Resilience: Wait-Free**

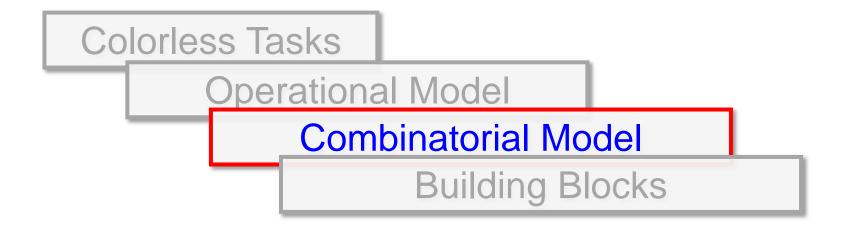




#### Resilience: t-resilient



# Road Map

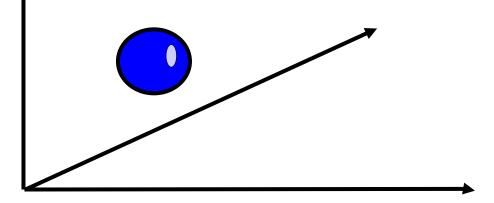


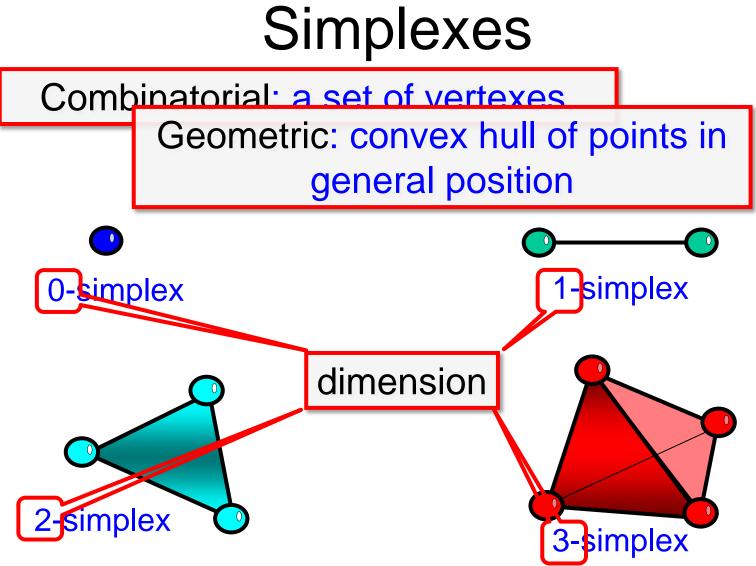
#### Crash Failure Solvability Byzantine Failure Solvability

#### A Vertex

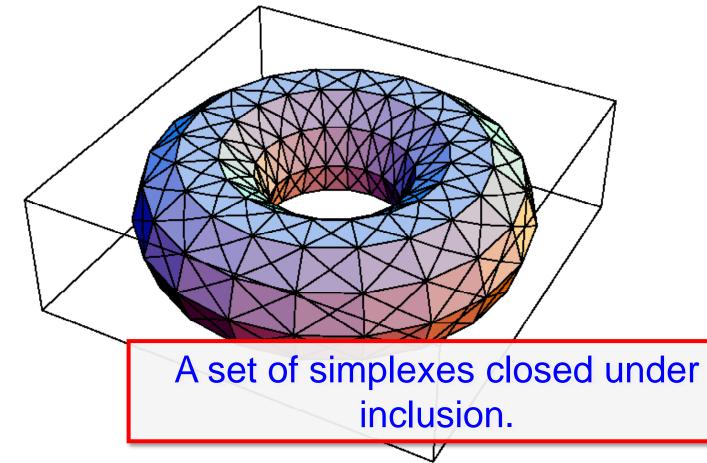


Geometric: a point in highdimensional Euclidean Space





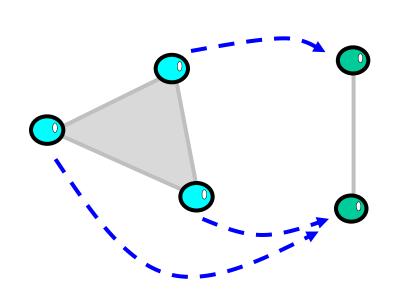
# **Simplicial Complex**



A geometric complex  $|\mathcal{K}|$  is a subset of Euclidean space!

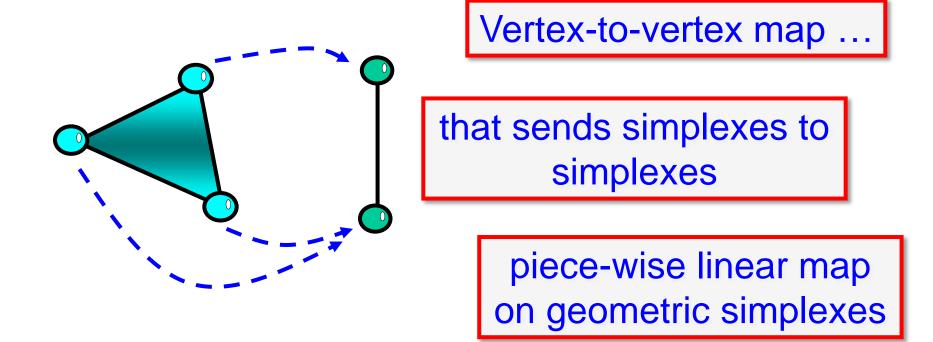
# An abstract complex $\mathcal{K}$ is a set of sets!

# **Simplicial Maps**

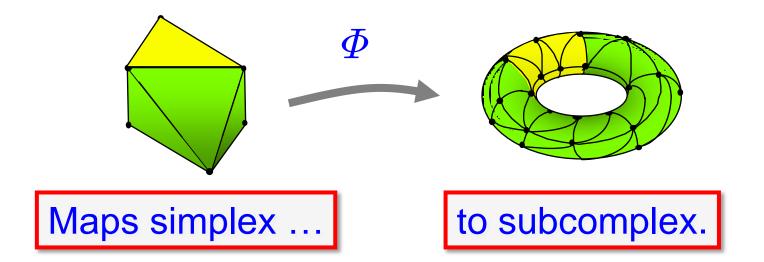


Vertex-to-vertex map ...

# **Simplicial Map**

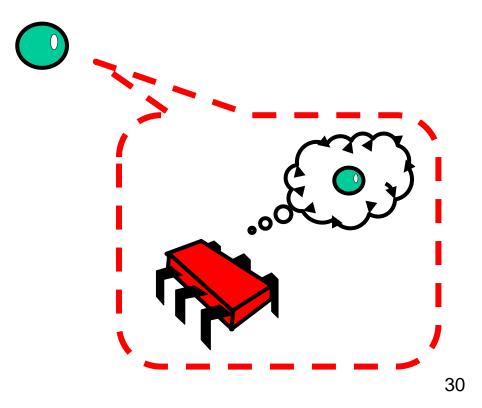


#### **Carrier Map**

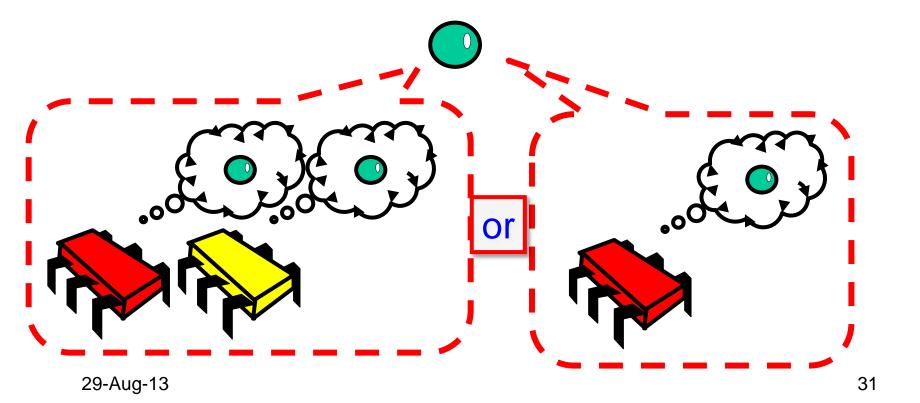


# Monotonic: if $\sigma \subseteq \tau$ then $\Phi(\sigma) \subseteq \Phi(\tau)$ Always OK to discard inputs

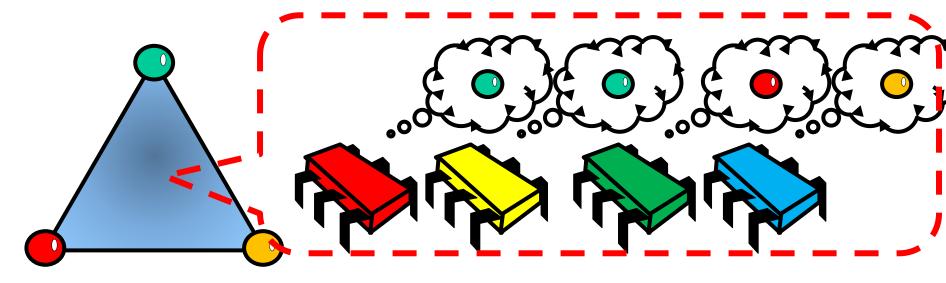
# Vertex = Input or Output Value



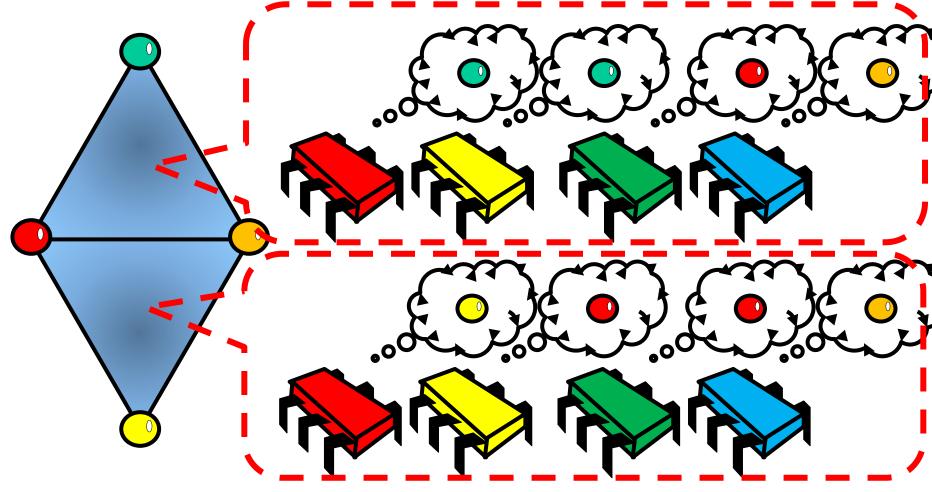
# Vertex = Input or Output Value



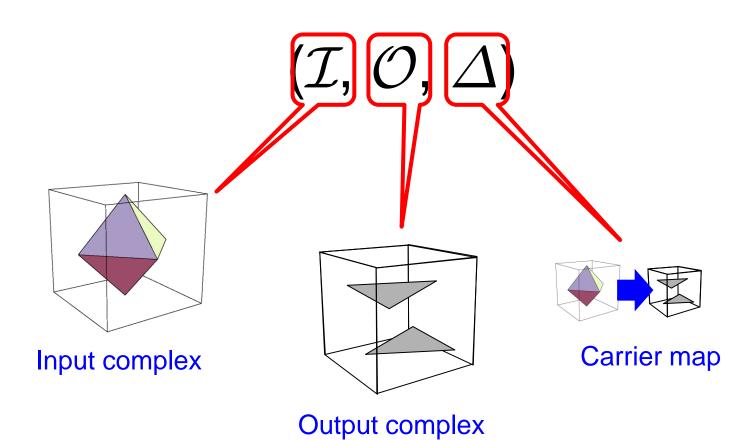
#### Simplex = Compatible Values



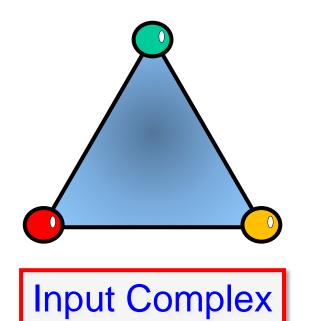
#### Simplex = Compatible Values



# **Task Specification**



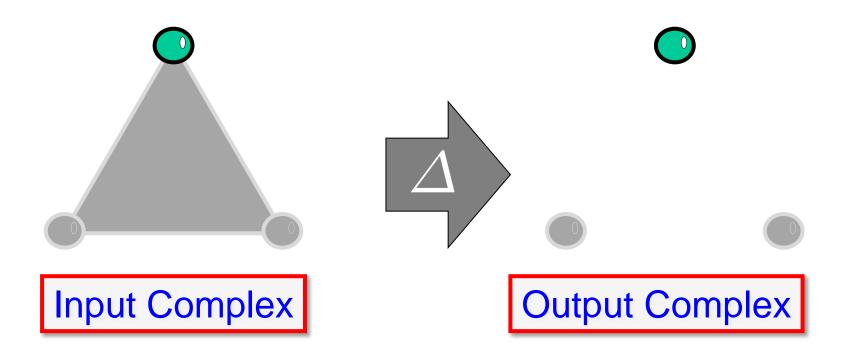
#### Consensus



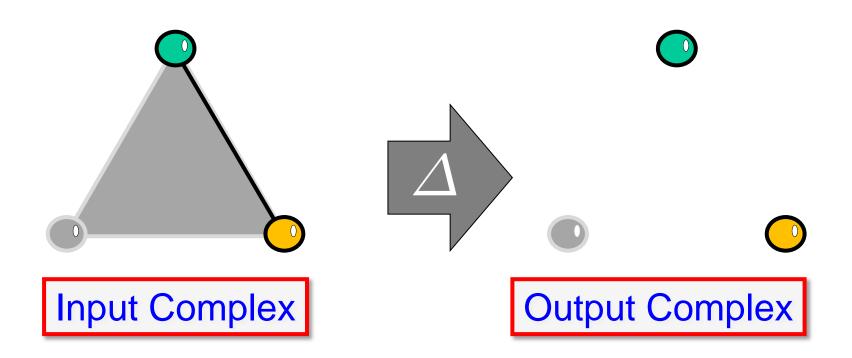




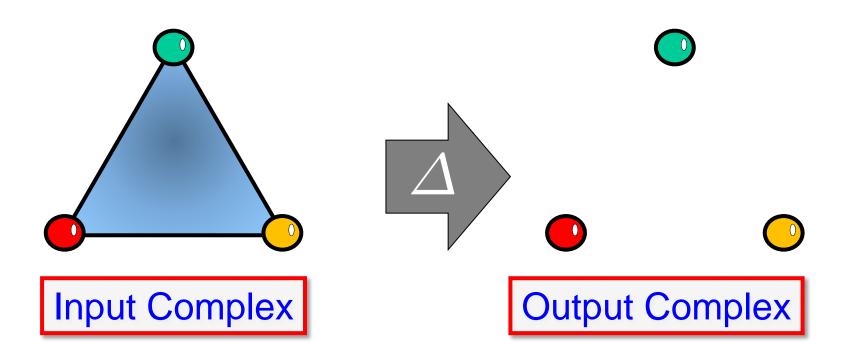
### **Carrier Map**



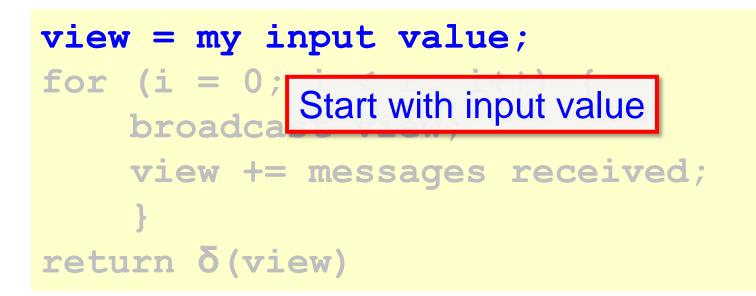
#### Consensus

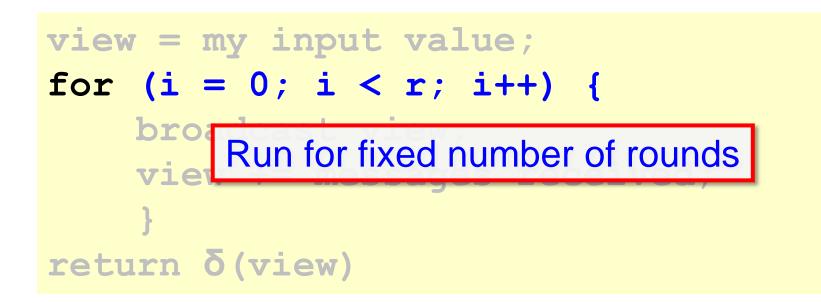


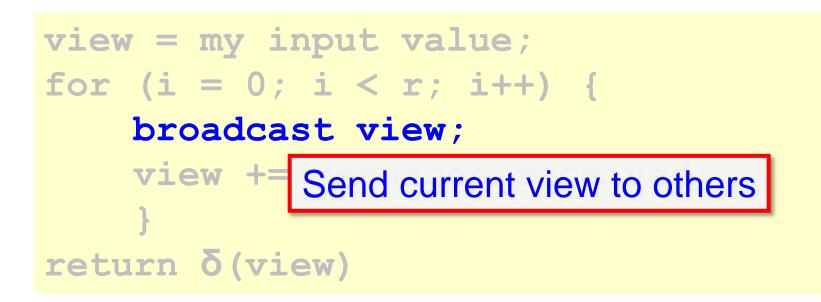
#### Consensus

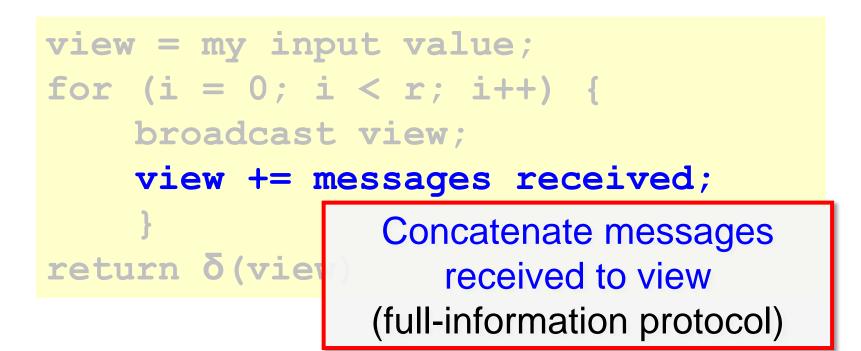


```
view = my input value;
for (i = 0; i < r; i++) {
    broadcast view;
    view += messages received;
    }
return δ(view)
```









```
view = my input value;
for (i = 0; i < r; i++) {
    broadcast view;
    view += messages received;
return \delta (view)
       finally, apply task-specific
         decision map to view
```

#### **Protocol Complex**

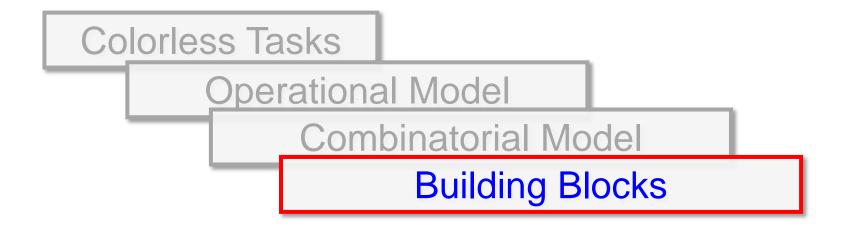
#### Vertex: possible view

Full information: messages sent & received

Simplex: compatible set of views

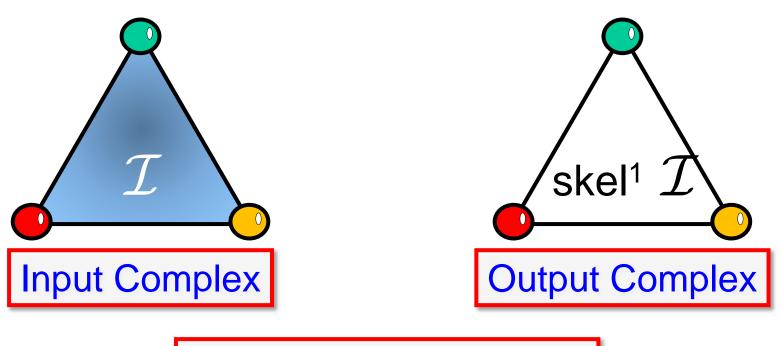
Each execution defines a simplex

#### Road Map



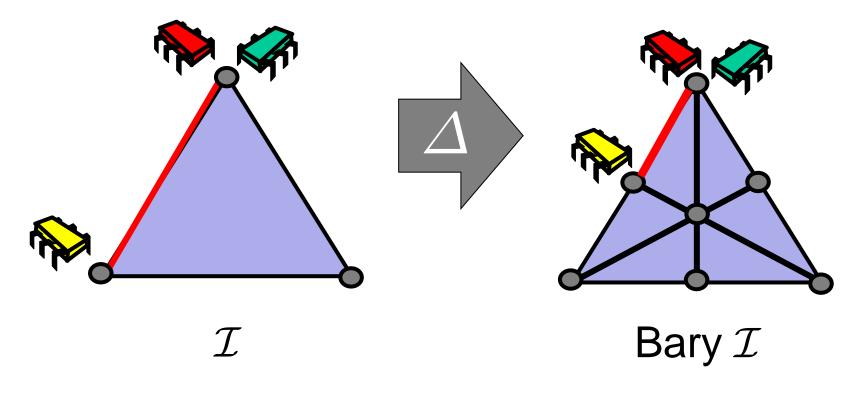
Crash Failure Solvability Byzantine Failure Solvability

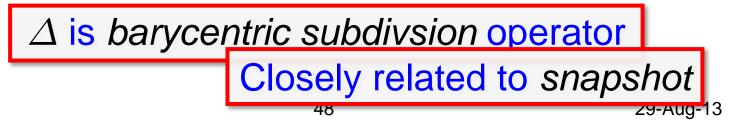
#### k-Set Agreement



 $\Delta$  is *k*-skeleton operator

#### **Barycentric Agreement**





# k-Set Agreement in Crash Failure Model

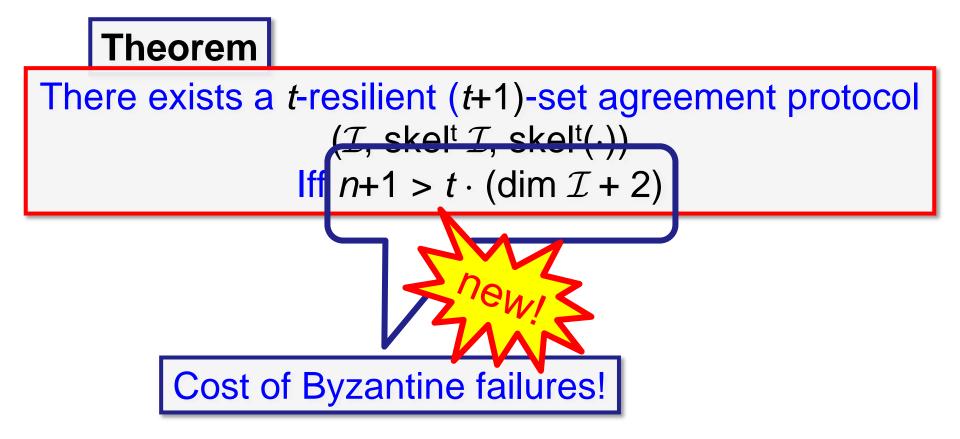
#### Theorem

There exists a *t*-resilient (*t*+1) -set agreement protocol  $(\mathcal{I}, \text{skel}^t \mathcal{I}, \text{skel}^t(\cdot))$ 

#### Proof

Broadcast value, wait for all but *t* values, decide least one.

# *k*-Set Agreement in Byzantine Failure Model



# The Necessary Part

Byzantine processes cannot influence decisions! Non-Faulty processes cannot "believe" value with < t+1 witnesses If n+1 >  $t \cdot (\dim \mathcal{I} + 2)$  then some value has at least t+1 witnesses

## The Sufficient Part

Variation of *reliable broadcast* protocol of [Bracha 87] and [Shrikanth &Toueg 87]

Non-Faulty processes agree on values sent by others, even faulty processes.

If one non-faulty process receives a message, so do the others (liveness)

# Barycentric Agreement in Crash Failure Model

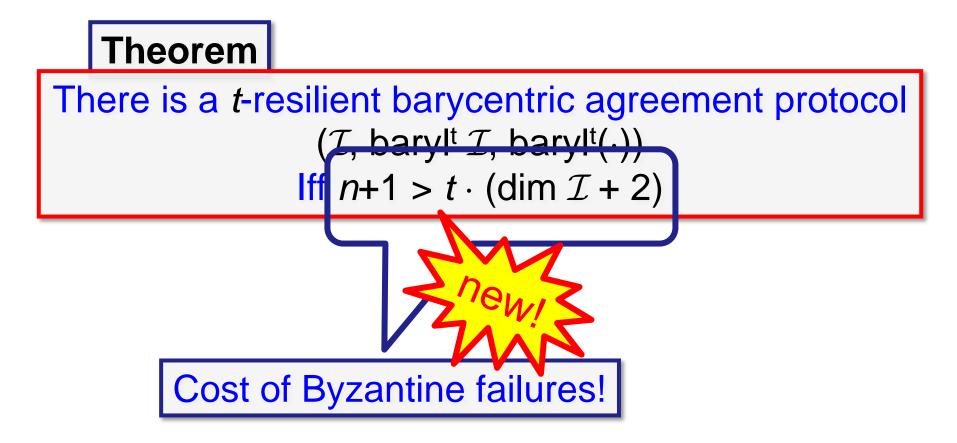
Theorem

Proof

There is a *t*-resilient barycentric agreement protocol  $(\mathcal{I}, \operatorname{Bary}^{N} \mathcal{I}, \operatorname{Bary}^{N}(\cdot))$ 

Variation of stable vectors algorithm of [Attiya et al. 90]

# Barycentric Agreement in Byzantine Failure Model



# The Necessary Part

Byzantine processes cannot influence decisions! Non-Faulty processes cannot "believe" value with < t+1 witnesses If n+1 >  $t \cdot (\dim \mathcal{I} + 2)$  then some value has at least t+1 witnesses

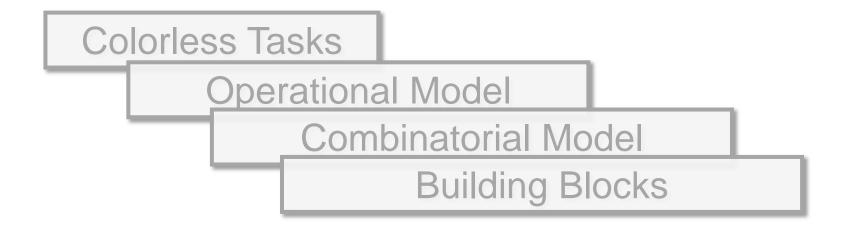
## The Sufficient Part

Byzantine variation of stable vectors algorithm of [Attiya et al. 90]

Use reliable broadcast to spread values

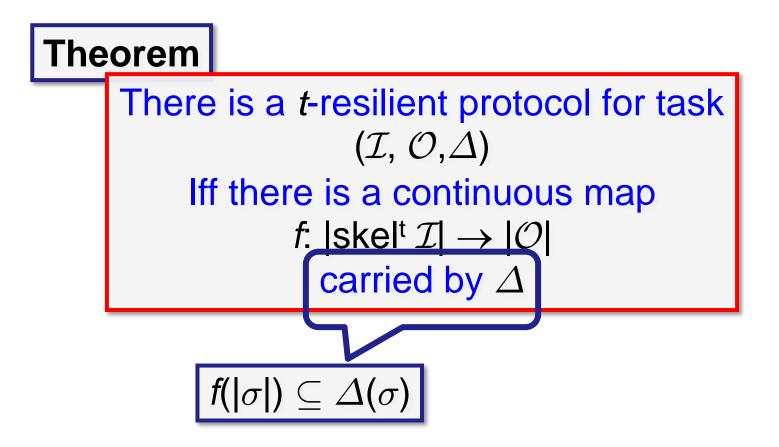
Ignore values with fewer than *t*+1 witnesses ...

#### Road Map

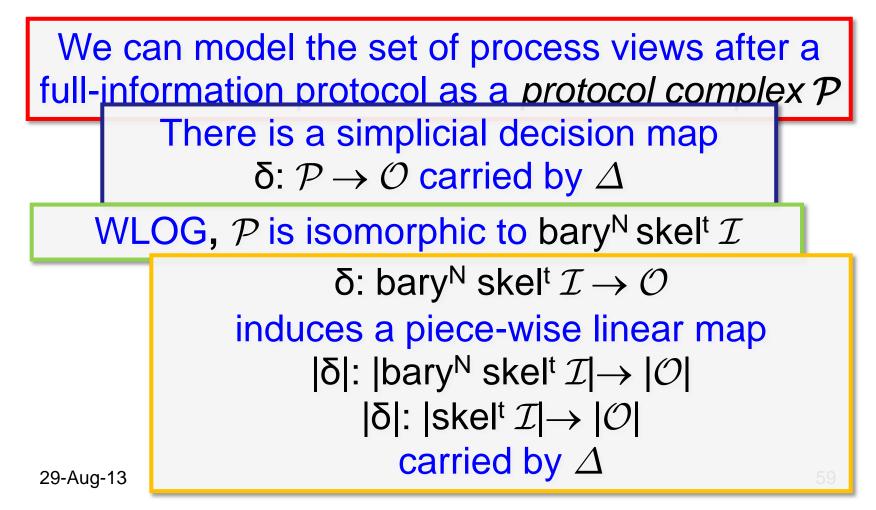


Crash Failure Solvability Byzantine Failure Solvability

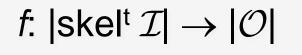
# Solvability for Crash Failures



# The Necessary Part







has a simplicial approximation for some N > 0  $\phi$ : bary<sup>N</sup> skel<sup>t</sup>  $\mathcal{I} \rightarrow \mathcal{O}$ 

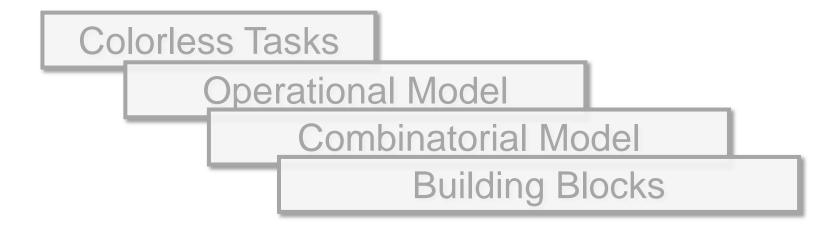
Step 1: use *t*-set agreement protocol to go from vertex of  $\mathcal{I}$  to vertex of skel<sup>t</sup>  $\mathcal{I}$ 

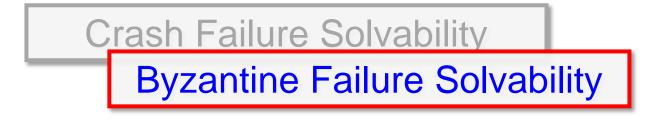
Step 2: use repeated barycentric agreement to go from vertex of skel<sup>t</sup>  $\mathcal{I}$ to vertex of : bary<sup>N</sup> skel<sup>t</sup>  $\mathcal{I}$ 

**Step 3**: from vertex  $v \in$  : bary<sup>N</sup> skel<sup>t</sup>  $\mathcal{I}$ , decide  $\phi(v)$ 

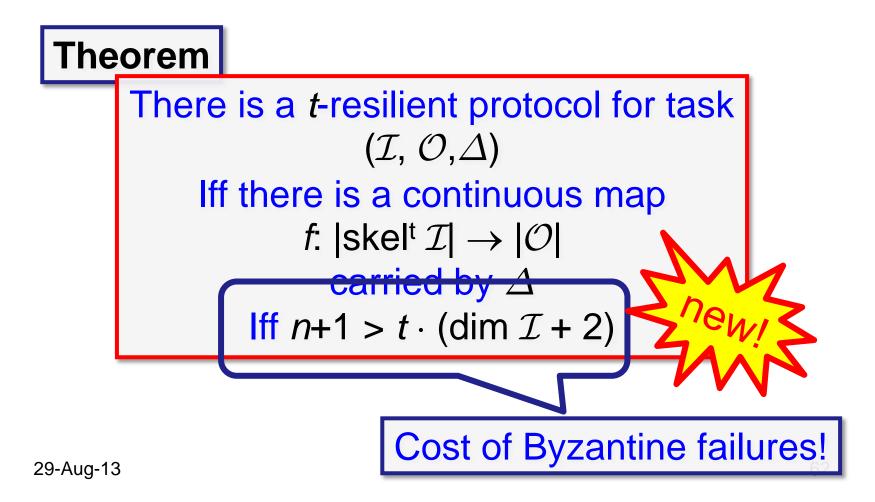
29-Aug-13

#### Road Map

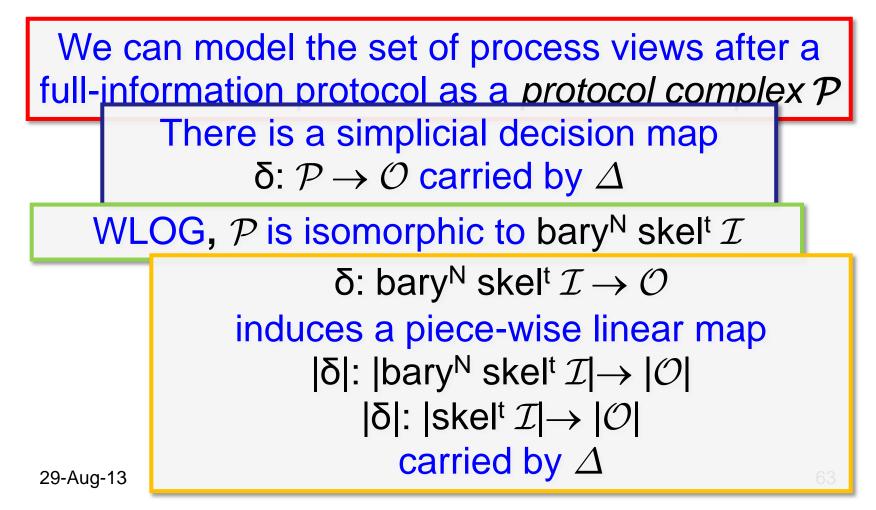


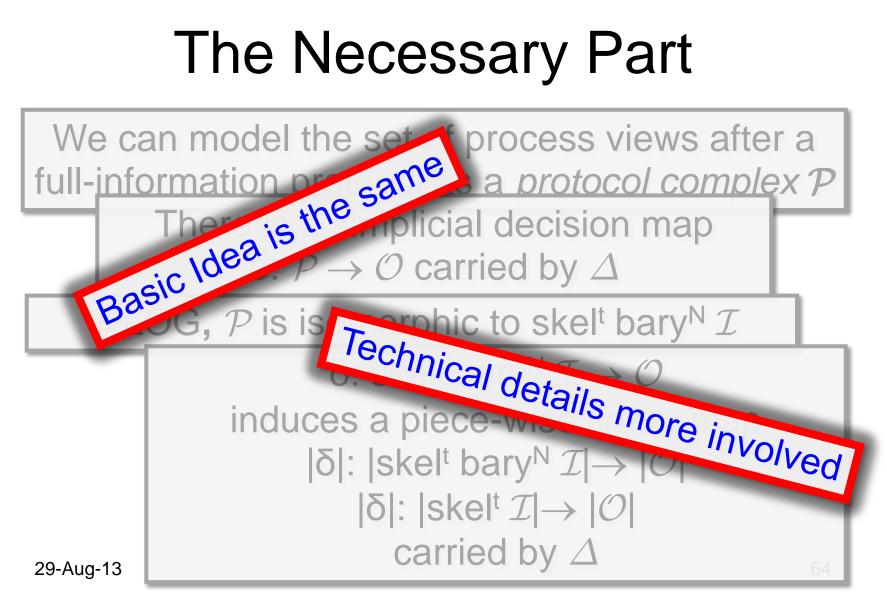


# Solvability for Byzantine Failures

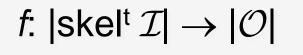


# The Necessary Part









has a simplicial approximation for some N > 0  $\phi$ : bary<sup>N</sup> skel<sup>t</sup>  $\mathcal{I} \rightarrow \mathcal{O}$ 

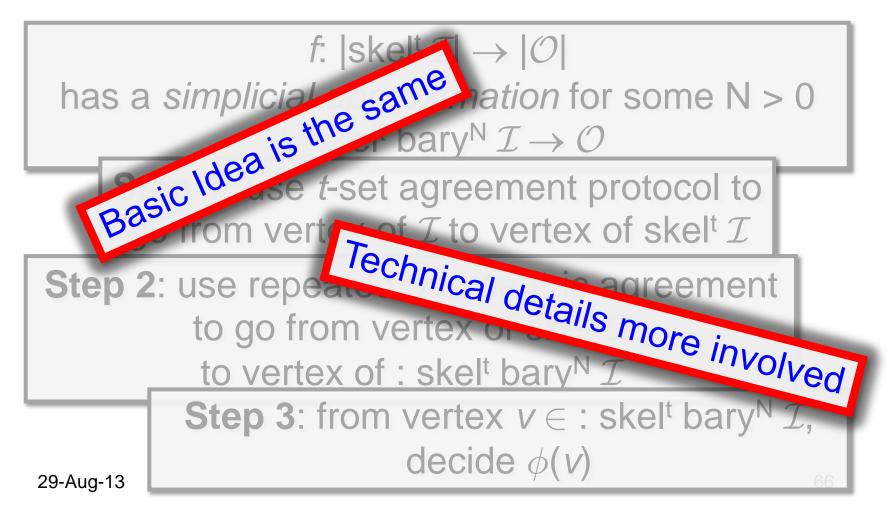
Step 1: use *t*-set agreement protocol to go from vertex of  $\mathcal{I}$  to vertex of skel<sup>t</sup>  $\mathcal{I}$ 

Step 2: use repeated barycentric agreement to go from vertex of skel<sup>t</sup>  $\mathcal{I}$ to vertex of : bary<sup>N</sup> skel<sup>t</sup>  $\mathcal{I}$ 

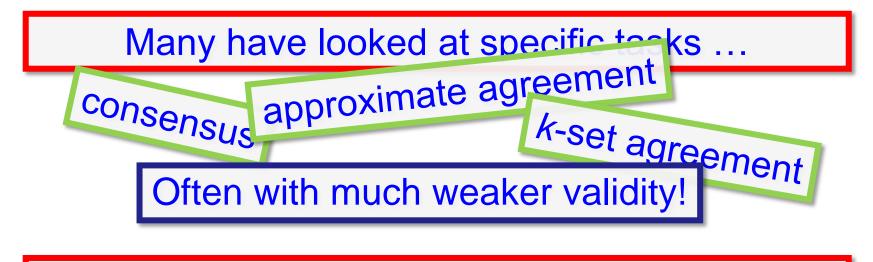
**Step 3**: from vertex  $v \in :$  bary<sup>N</sup> skel<sup>t</sup>  $\mathcal{I}$ , decide  $\phi(v)$ 

29-Aug-13

### The Sufficient Part



#### Conclusions



First to look at general (colorless) tasks ...

First to characterize what can and can't be solved

#### Conclusions

The language of combinatorial topology (vertex, simplex, skeleton, simplicial map ...) allows us to state and prove such results succinctly Important to exploit the duality of combinatorial and continuous model (such as simplicial approximation)

Here, we did not need "advanced" concepts like connectivity, but they are needed elsewhere, such as the synchronous model ...

# **Open Problems**



Combinatorial Topology & Distributed Computing





Maurice Herlihy, Dmitry Feichtner-Kozlov, Sergio Rajsbaum

29-Aug-13