
Topology of random flag complexes

Matthew Kahle

Ohio State University

2013–07–18

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  0.1  0.2  0.3  0.4  0.5  0.6

ra
nk
%o
f%
ho
mo
lo
gy

edge%probability

�0
�1
�2
�3
�4
�5

Matthew Kahle (Ohio State University) Random topology 2013–07–18



“I predict a new subject of statistical topology. Rather than count the
number of holes, Betti numbers, etc., one will be more interested in the
distribution of such objects on noncompact manifolds as one goes out
to infinity.” — Isadore Singer, 2004.
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Some earlier work:

Gaussian fields on manifolds — Adler and Taylor, 2003.
Random simplicial complexes — Linial and Meshulam, 2006.
Random triangulated surfaces — Pippenger and Schleich, 2006.
Random 3-manifolds — Dunfield and Thurston, 2006.
Random planar linkages — Farber and Kappeller, 2007.
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Randomness models the natural world.

We need to put topological data analysis on firmer probabilistic
foundations in order to quantify inference, etc.
Certain situations in physics seem to be well modeled by
probabilistic topology.
Why do so many groups / manifolds / simplicial complexes / etc.
seem to have a certain topological property?

E.g. many simplicial complexes and posets arising in
combinatorics are homotopy equivalent to bouquets of spheres.
But why does this happen so often?
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The probabilistic method provides existence proofs.

Ramsey theory and extremal graph theory e.g. Erdős, ...
Geometric group theory — e.g. Gromov, Żuk
Expander graphs — e.g. Pinsker, Barzdin & Kolmogorov, etc.
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Geometric group theory — e.g. Gromov, Żuk
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Random graphs
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Define G(n, p) to be the probability space of graphs on vertex set
[n] = {1, 2, . . . , n}, where each edge has probability p, independently.

We use the notation G ⇠ G(n, p) to indicate a graph chosen according
to this distribution.

It is often useful to think of a growth process associated with G(n, p)
where edges are added one at a time.
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Theorem (Erdős–Rényi, 1959)
Let ✏ > 0 be fixed and G ⇠ G(n, p). Then

P[G is connected] !

8
<

:

1 : p � (1 + ✏) log n/n

0 : p  (1 � ✏) log n/n

They actually proved a slightly sharper result.
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Theorem (Erdős–Rényi, 1959)
Let ✏ > 0 be fixed and G ⇠ G(n, p). Then

P[G is connected] !

8
<

:

1 : p � (1 + ✏) log n/n

0 : p  (1 � ✏) log n/n

They actually proved a slightly sharper result.

Matthew Kahle (Ohio State University) Random topology 2013–07–18



Theorem (Erdős–Rényi, 1959)
Let c 2 R be fixed and G ⇠ G(n, p). If

p =
log n + c

n
,

then e�0(G) is asymptotically Poisson distributed with mean e�c and in
particular

P[G is connected] ! e�e�c

as n ! 1.
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The first step is to show that if p ⇡ log n/n, then the probability that
there are any components of order i , with 2  i  n/2 tends to 0 as
n ! 1.

A “union bound” argument shows that it is sufficient to show that

bn/2cX

k=2

✓
n
k

◆
kk�2pk�1(1 � p)k(n�k) ! 0,

as n ! 1.

So w.h.p. G(n, p) consists of a giant component and isolated vertices.
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Now set p = (log n + c)/n, where c 2 R is fixed. By linearity of
expectation, the expected number of isolated vertices V is

E[V ] = n(1 � p)n�1,

and since 1 � p ⇡ e�p for p ⇡ 0, we have

E[V ] ! e�c ,

as n ! 1.

By computing the higher moments, one can show that V approaches a
Poisson distribution with mean e�c .

Matthew Kahle (Ohio State University) Random topology 2013–07–18



Now set p = (log n + c)/n, where c 2 R is fixed. By linearity of
expectation, the expected number of isolated vertices V is

E[V ] = n(1 � p)n�1,

and since 1 � p ⇡ e�p for p ⇡ 0, we have

E[V ] ! e�c ,

as n ! 1.

By computing the higher moments, one can show that V approaches a
Poisson distribution with mean e�c .

Matthew Kahle (Ohio State University) Random topology 2013–07–18



Comments:

The proof is phrased in terms of cohomology rather than in terms
of homology.
The ultimate obstruction to connectivity is isolated vertices.
Once p is a little bit past the connectivity threshold, G ⇠ G(n, p) is
an expander.
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Theorem (Hoffman, K., Paquette, 2012)
Fix k � 0 and ✏ > 0 be fixed. Let 0 = �1  �2  · · ·  �n  2 be the
eigenvalues of the normalized Laplacian of the random graph G(n, p).
There is a constant Ck so that when

p �
(k + 1) log n + Ck

p
log n log log n

n

is satisfied, then
�2 > 1 � ✏,

with probability at least 1 � o(n�k ).
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It is worth noting that there is another topological phase transition for
G(n, p), namely when cycles first appear.
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Theorem (Pittel)
Let c > 0 be fixed, p = c/n, and G ⇠ G(n, p). Then

P[H1(G) = 0] !

8
><

>:

0 : c � 1

p
1�c

exp(c/2+c2/4) : c < 1

as n ! 1.

Matthew Kahle (Ohio State University) Random topology 2013–07–18



Random flag complexes
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Let X ⇠ X (n, p) be the clique complex (or flag complex) of
G ⇠ G(n, p), i.e. the maximal simplicial complex compatible with G.

Note: every simplicial complex is homeomorphic to a flag complex,
e.g. by barycentric subdivision, so X (n, p) puts a measure on a wide
range of topologies.
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Theorem (K., 2007)
Fix k � 1, and let X ⇠ X (n, p). If

1
n1/k ⌧ p ⌧ 1

n1/(k+1)

then
P[Hk (X ) = 0] ! 0

as n ! 1.
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In fact, much more can be said about the size of homology in this
regime. The limiting expectation has a nice formula.

Theorem (K., 2007)
If

1
n1/k ⌧ p ⌧ 1

n1/(k+1)

then
E[�k ]

� n
k+1

�
p(

k+1
2 )

! 1

as n ! 1.
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Moreover, the k th Betti number satisfies a central limit theorem.

Theorem (K.–Meckes, 2010))
If

1
n1/k ⌧ p ⌧ 1

n1/(k+1)

then
�k � E[�k ]p

Var [�k ]
! N (0, 1)

as n ! 1.

Matthew Kahle (Ohio State University) Random topology 2013–07–18



Moreover, the k th Betti number satisfies a central limit theorem.

Theorem (K.–Meckes, 2010))
If

1
n1/k ⌧ p ⌧ 1

n1/(k+1)

then
�k � E[�k ]p

Var [�k ]
! N (0, 1)

as n ! 1.

Matthew Kahle (Ohio State University) Random topology 2013–07–18



The following new result gives a sharp vanishing threshold for
cohomology.

Theorem (K., 2012)
Let 0 < ✏ < 1 and k be fixed and X ⇠ X (n, p). Then

P[Hk (Y ,Q) = 0] !

8
><

>:

1 : p �
⇣
(k/2+1+✏) log n

n

⌘1/(k+1)

0 : 1
n1/k ⌧ p 

⇣
(k/2+1�✏) log n

n

⌘1/(k+1)

This provides a generalization of the Erdős–Rényi Theorem.
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Besides the earlier spectral gap theorem, the main tool is the following.

Theorem
(Garland, 1973, Ballman–Świątkowski, 1997) If � is a pure
k-dimensional simplicial complex, such that the link lk�(�) of every
(k � 2)-face � is connected and has spectral gap satisfying

�2[lk�(�)] > 1 � 1/k ,

then Hk�1(�,Q) = 0.
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We have the following corollary.

Corollary
Fix d � 0, and let X ⇠ X (n, p) be a random flag complex, where

1
n2/d ⌧ p ⌧ 1

n2/(d+1) .

Then w.h.p. X is d-dimensional and eHi(X ,Q) = 0 unless i = bd/2c.

Moreover, if d � 6 then w.h.p. X is rationally homotopy equivalent to a
wedge of bd/2c-spheres.
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One consequence is that now we can predict Betti numbers of random
flag complexes fairly well, even for small n...
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The predicted Betti numbers are given by the absolute Euler
characteristic.

|E[�]| =
����

✓
100

1

◆
�
✓

100
2

◆
p +

✓
100
3

◆
p3 � . . .

���� .
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The actual Betti numbers.
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The new results also say something with respect to persistent
homology of the random filtration associated with X (n, p).
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Corollary
Fix ✏ > 0 and k � 1. Let b, d be the birth time and death time,
respectively of the longest bar in persistent Hk . Then w.h.p.

log d � log b
log n

⇡ 1
k(k + 1)

.
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Open problems
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It might be possible to slightly sharpen the main result.
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Conjecture
If

p =

✓
(k/2 + 1) log n + (k/2) log log n + c

n

◆1/(k+1)
,

where c 2 R is constant, then the dimension of kth cohomology �k

approaches a Poisson distribution with mean

µ =
(k/2 + 1)k/2

(k + 1)!
e�c .

In particular,

P[Hk (X ,Q) = 0] ! exp

"
�(k/2 + 1)k/2

(k + 1)!
e�c

#
,

as n ! 1.
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How to handle torsion in homology of random complexes?

There exists a 2-dimensional Q-acyclic simplicial complex S on 31
vertices with

|H1(S,Z)| = 736712186612810774591.

Gil Kalai showed that, on average, Q-acyclic complexes have
enormous torsion in homology.
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Still, I conjecture the following.

Conjecture
If X ⇠ X (n, p) is a random flag complex with

1
n2/d ⌧ p ⌧ 1

n2/(d+1) ,

where d � 6 is fixed, then w.h.p. X is homotopy equivalent to a wedge
of bd/2c-spheres.

By uniqueness of Moore spaces, this is equivalent to showing that
H⇤(X ) is torsion-free.
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Thanks for your time and attention!
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