On topological abstraction of higher dimensional automata

Thomas Kahl

Applied and Computational Algebraic Topology Bremen, July 2013

Higher dimensional automata

A higher dimensional automaton over a monoid M (M-HDA) is a tuple

$$\mathcal{A} = (\mathcal{P}, \mathcal{I}, \mathcal{F}, \lambda)$$

where

- P is a precubical set,
- I \subseteq P_0 is a set of *initial states*,
- $F \subseteq P_0$ is a set of *final states*,
- $\lambda: P_1 \rightarrow M$ is a map, called the *labelling function*, such that

$$\lambda(d_i^0 x) = \lambda(d_i^1 x)$$

for all $x \in P_2$ and $i \in \{1, 2\}$.

Higher dimensional automata

Figure: Cubes represent independence of actions

Paths

Let *k* and *l* be integers such that $k \leq l$. The *precubical interval* [k, l] is the precubical set

$$\overset{k}{\bullet} \overset{k+1}{\bullet} \overset{}{\to} \cdots \overset{l-1}{\bullet} \overset{l}{\to} \overset{l}{\bullet}$$

A *path of length* k in a precubical set P is a morphism of precubical sets $\omega : [[0, k]] \to P$.

The set of paths in *P* is denoted by $P^{\mathbb{I}}$.

Remark

A path of length $k \ge 1$ can be identified with a sequence (x_1, \ldots, x_k) of elements of P_1 such that $d_1^0 x_{j+1} = d_1^1 x_j$ $(1 \le j < k)$.

The language accepted by an HDA

The *extended labelling function* of an an *M*-HDA $\mathcal{A} = (P, I, F, \lambda)$ is the map

$$\overline{\lambda} \colon P^{\mathbb{I}} \to M$$

defined by

$$\overline{\lambda}(x_1,\ldots,x_k)=\lambda(x_1)\cdots\lambda(x_k).$$

If ω is a path of length 0, then we set

$$\overline{\lambda}(\omega) = \mathbf{1}.$$

The language accepted by \mathcal{A} is the set

 $L(\mathcal{A}) = \{\overline{\lambda}(\omega) : \omega \in \mathcal{P}^{\mathbb{I}}, \ \omega(\mathbf{0}) \in \mathcal{I}, \ \omega(\operatorname{length}(\omega)) \in \mathcal{F}\}.$

Dihomotopy

Two paths ω and ν in a precubical set P are said to be *elementarily dihomotopic* if there exist paths $\alpha, \beta \in P^{\mathbb{I}}$ and an element $z \in P_2$ such that

$$d_1^0 d_1^0 z = \alpha (length(\alpha)), \ d_1^1 d_1^1 z = \beta(0),$$

$$\{\omega,\nu\} = \{\alpha \cdot (d_1^0 z, d_2^1 z) \cdot \beta, \alpha \cdot (d_2^0 z, d_1^1 z) \cdot \beta\}.$$

Dihomotopy is the equivalence relation generated by elementary dihomotopy.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Dihomotopy

Dihomotopic paths

The trace language of an HDA

Let $\mathcal{A} = (P, I, F, \lambda)$ be an *M*-HDA. We say that $a, b \in M$ are *independent in* \mathcal{A} if

1
$$a, b \in \lambda(P_1);$$

$$a \neq b;$$

3 for all paths $\omega \in P^{\mathbb{I}}$ and elements $u, v \in M$ with $\overline{\lambda}(\omega) \in \{uabv, ubav\}$ there exists a path $\nu \in P^{\mathbb{I}}$ such that ω and ν are dihomotopic and $\{\overline{\lambda}(\omega), \overline{\lambda}(\nu)\} = \{uabv, ubav\}$.

We denote by \equiv_A the smallest congruence relation in *M* such that *ab* and *ba* are congruent for all independent elements *a*, *b* \in *M*.

The quotient monoid $M \equiv_{\mathcal{A}}$ is called the *trace monoid* of \mathcal{A} , and the canonical projection $M \rightarrow M \equiv_{\mathcal{A}}$ is denoted by $tr_{\mathcal{A}}$. The *trace language* of \mathcal{A} is the set

$$TL(\mathcal{A}) = tr_{\mathcal{A}}(L(\mathcal{A})) \subseteq M / \equiv_{\mathcal{A}} .$$

Stable and deterministic HDAs

We say that an *M*-HDA $\mathcal{A} = (P, I, F, \lambda)$ is *stable* if two elements $a, b \in M$ are independent if there exists an element $z \in P_2$ such that $\{\lambda(d_1^0 z), \lambda(d_2^0 z)\} = \{a, b\}.$

We say that an *M*-HDA is *deterministic* if it has exactly one initial state and if any two paths with the same starting point and the same label are equal.

Proposition

Let A be a deterministic and stable M-HDA. Then two paths with the same starting point are dihomotopic if and only if they have congruent labels.

The *fundamental category* of a precubical set *P* is the category $\vec{\pi}_1(P)$ whose objects are the vertices of *P* and whose morphisms are the dihomotopy classes of paths in *P*.

A vertex *v* of a precubical set *P* is said to be *maximal (minimal)* if there is no element $x \in P_1$ such that $d_1^0 x = v$ ($d_1^1 x = v$). The sets of maximal and minimal elements of *P* are denoted by M(P) and m(P) respectively.

The *trace category* of an *M*-HDA $\mathcal{A} = (P, I, F, \lambda)$, *TC*(\mathcal{A}), is the full subcategory of $\vec{\pi}_1(P)$ generated by $I \cup F \cup m(P) \cup M(P)$.

(日) (日) (日) (日) (日) (日) (日) (日)

Two HDAs

Figure: Two HDAs A and B over the free monoid on $\{a, b, c\}$

Tensor product

Given two precubical sets *P* and *Q*, the *tensor product* $P \otimes Q$ is the precubical set defined by

$$(P \otimes Q)_n = \coprod_{p+q=n} P_p \times Q_q.$$

and

$$d_i^k(x,y) = \left\{ egin{array}{cc} (d_i^kx,y), & 1\leq i\leq \deg(x),\ (x,d_{i-\deg(x)}^ky), & \deg(x)+1\leq i\leq \deg(x)+\deg(y). \end{array}
ight.$$

Remark

$$|\llbracket 0, k_1 \rrbracket \otimes \cdots \otimes \llbracket 0, k_n \rrbracket| = [0, k_1] \times \cdots \times [0, k_n].$$

Weak morphisms

A *weak morphism* from a precubical set *P* to a precubical set *Q* is a continuous map $f: |P| \rightarrow |Q|$ such that the following two conditions hold:

- 1 f sends vertices to vertices;
- 2 for all integers n, k₁,..., k_n ≥ 1 and every morphism of precubical sets ξ: [[0, k₁]]⊗····⊗ [[0, k_n]] → P there exist integers l₁,..., l_n ≥ 1, a morphism of precubical sets

$$\chi : \llbracket \mathbf{0}, I_1 \rrbracket \otimes \cdots \otimes \llbracket \mathbf{0}, I_n \rrbracket \to Q$$

and a homeomorphism

$$\phi \colon |\llbracket 0, k_1 \rrbracket \otimes \cdots \otimes \llbracket 0, k_n \rrbracket| = [0, k_1] \times \cdots \times [0, k_n] \to |\llbracket 0, l_1 \rrbracket \otimes \cdots \otimes \llbracket 0, l_n \rrbracket| = [0, l_1] \times \cdots \times [0, l_n],$$

such that $f \circ |\xi| = |\chi| \circ \phi$ and ϕ is a dihomeomorphism, i.e. ϕ and ϕ^{-1} preserve the natural partial order of \mathbb{R}^n .

Weak morphisms

Let $f: |P| \to |Q|$ be a weak morphism of precubical sets and $\omega: [\![0,k]\!] \to P(k \ge 0)$ be a path. We denote by $f^{\mathbb{I}}(\omega)$ the unique path $\nu: [\![0,l]\!] \to Q$ for which there exists a dihomeomorphism $\phi: |[\![0,k]\!]| = [\![0,k]\!] \to |[\![0,l]\!]| = [\![0,l]\!]$ such that $f \circ |\omega| = |\nu| \circ \phi$.

A weak morphism from an *M*-HDA $\mathcal{A} = (P, I, F, \lambda)$ to an *M*-HDA $\mathcal{B} = (Q, J, G, \mu)$ is a weak morphism $f \colon |P| \to |Q|$ such that $f(I) \subseteq J, f(F) \subseteq G$ and $\overline{\mu} \circ f^{\mathbb{I}} = \overline{\lambda}$.

Proposition

Weak morphisms preserve dihomotopy. Consequently, if *f* is a weak morphism from an M-HDA $\mathcal{A} = (P, I, F, \lambda)$ to an M-HDA $\mathcal{B} = (Q, J, G, \mu)$ such that $f(m(P)) \subseteq m(Q)$ and $f(M(P)) \subseteq$ M(Q), then *f* induces a functor $f_* \colon TC(\mathcal{A}) \to TC(\mathcal{B})$.

Homeomorphic abstraction

Consider two *M*-HDAs $\mathcal{A} = (P, I, F, \lambda)$ and $\mathcal{B} = (P', I', F', \lambda')$. We say that \mathcal{A} is a *homeomorphic abstraction* of \mathcal{B} , or that \mathcal{B} is a *homeomorphic refinement* of \mathcal{A} , if there exists a weak morphism *f* from \mathcal{A} to \mathcal{B} that is a homeomorphism and satisfies f(I) = I' and f(F) = F'. We use the notation $\mathcal{A} \xrightarrow{\approx} \mathcal{B}$ to indicate that \mathcal{A} is a homeomorphic abstraction of \mathcal{B} .

Remark

The relation $\stackrel{\approx}{\rightarrow}$ is a preorder on the class of *M*-HDAs.

An *M*-HDA is said to be *weakly regular* if for every element *x* of degree 2, $d_1^0 x \neq d_2^0 x$ and $d_1^1 x \neq d_2^1 x$.

Theorem

Suppose that $\mathcal{A} \xrightarrow{\approx} \mathcal{B}$. If \mathcal{A} is weakly regular, then $TC(\mathcal{A}) \cong TC(\mathcal{B})$. If \mathcal{A} is stable and \mathcal{B} is stable and deterministic, then $TL(\mathcal{A}) \cong TL(\mathcal{B})$.

(日) (日) (日) (日) (日) (日) (日) (日)

Homeomorphic abstraction

The homology graph

Let *P* be a precubical set. We say that a homology class $\alpha \in H(|P|)$ points to a homology class $\beta \in H(|P|)$ and write $\alpha \nearrow \beta$ if there exist precubical subsets $X, Y \subseteq P$ such that $\alpha \in \operatorname{im} H(|X| \hookrightarrow |P|), \beta \in \operatorname{im} H(|Y| \hookrightarrow |P|)$ and for all $x \in X_0$ and $y \in Y_0$ there exists a path in *P* from *x* to *y*.

The *homology graph* of *P* is the directed graph whose vertices are the homology classes of |P| and whose edges are given by the relation \nearrow .

The *homology graph* of an *M*-HDA $\mathcal{A} = (P, I, F, \lambda)$ is defined to be the homology graph of *P*.

Theorem

Let $f: |P| \rightarrow |Q|$ be a weak morphism of precubical sets that is a homeomorphism. Then for all homology classes $\alpha, \beta \in H(|P|)$, $\alpha \nearrow \beta$ if and only if $f_*(\alpha) \nearrow f_*(\beta)$.

Ordered holes

The homology class representing the lower hole points to the homology class representing the upper hole.

Unordered holes

The homology graph has no edges between non-zero classes of H_1 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Topological abstraction

Consider two *M*-HDAs $\mathcal{A} = (P, I, F, \lambda)$ and $\mathcal{B} = (P', I', F', \lambda')$. We write $\mathcal{A} \xrightarrow{\sim} \mathcal{B}$ and say that \mathcal{A} is a *topological abstraction* of \mathcal{B} , or that \mathcal{B} is a *topological refinement* of \mathcal{A} , if there exists a weak morphism *f* from \mathcal{A} to \mathcal{B} such that

•
$$f(I) = I', f(F) = F', f(m(P)) = m(P'), f(M(P)) = M(P'),$$

- $f_*: TC(\mathcal{A}) \to TC(\mathcal{B})$ is an isomorphism,
- f is a homotopy equivalence,
- for all homology classes $\alpha, \beta \in H(|P|)$, $\alpha \nearrow \beta$ if and only if $f_*(\alpha) \nearrow f_*(\beta)$.

Theorem

Suppose that $\mathcal{A} \xrightarrow{\approx} \mathcal{B}$. If \mathcal{A} is weakly regular, then $\mathcal{A} \xrightarrow{\sim} \mathcal{B}$. If \mathcal{A} is stable and \mathcal{B} is stable and deterministic, then a bijection $TL(\mathcal{A}) \rightarrow TL(\mathcal{B})$ is given by $tr_{\mathcal{A}}(I) \mapsto tr_{\mathcal{B}}(I)$.

Topological abstraction

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶