Bremen - July, 18 2013

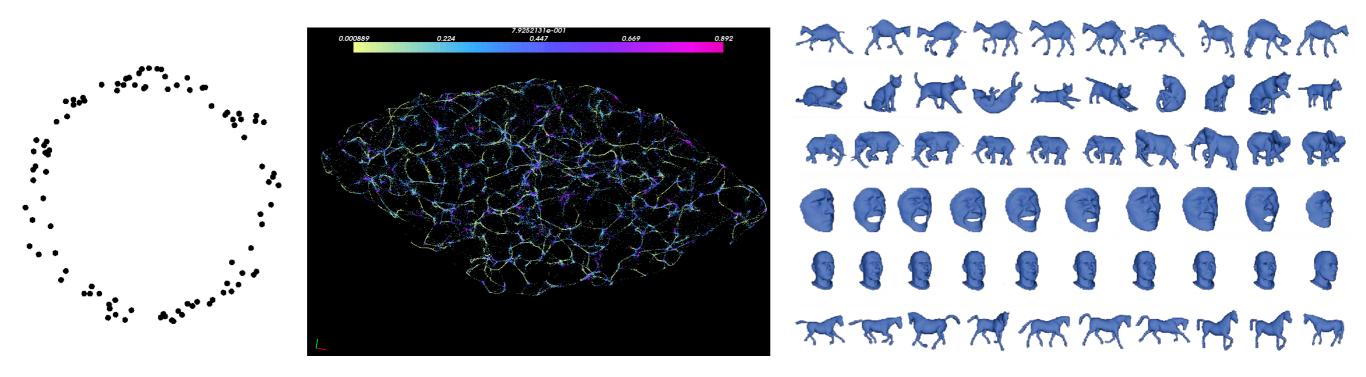
Applied and Computational Algebraic Topology

Optimal rates of convergence for persistence diagrams in Topological Data Analysis

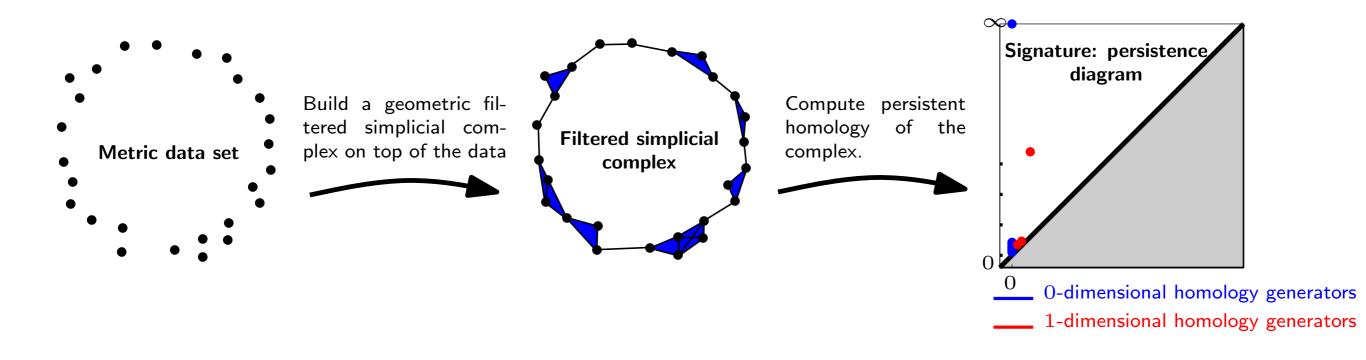
Frédéric Chazal

Joint work with M. Glisse, C. Labruère and B. Michel (+ V. de Silva and S. Oudot)

Introduction

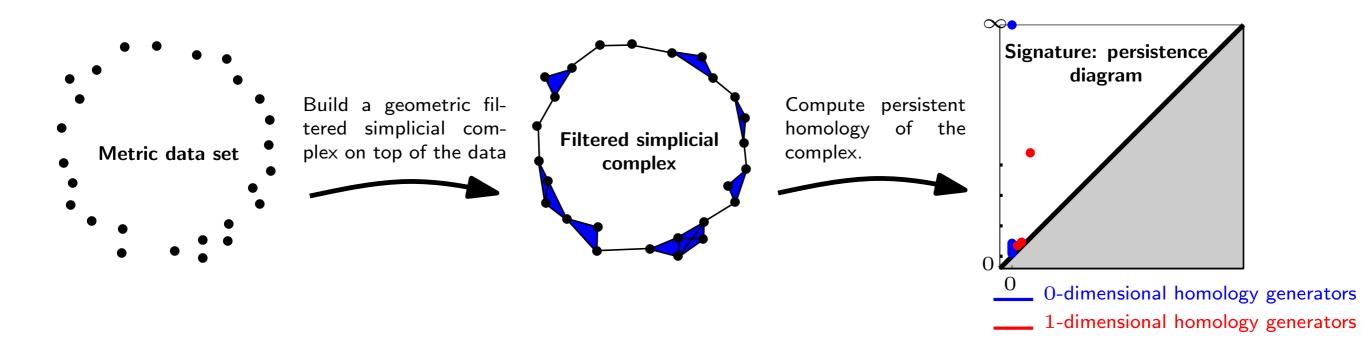


- Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with possibly complex topological/geometric structure.
- TDA: infer relevant topological and geometric features of these spaces.



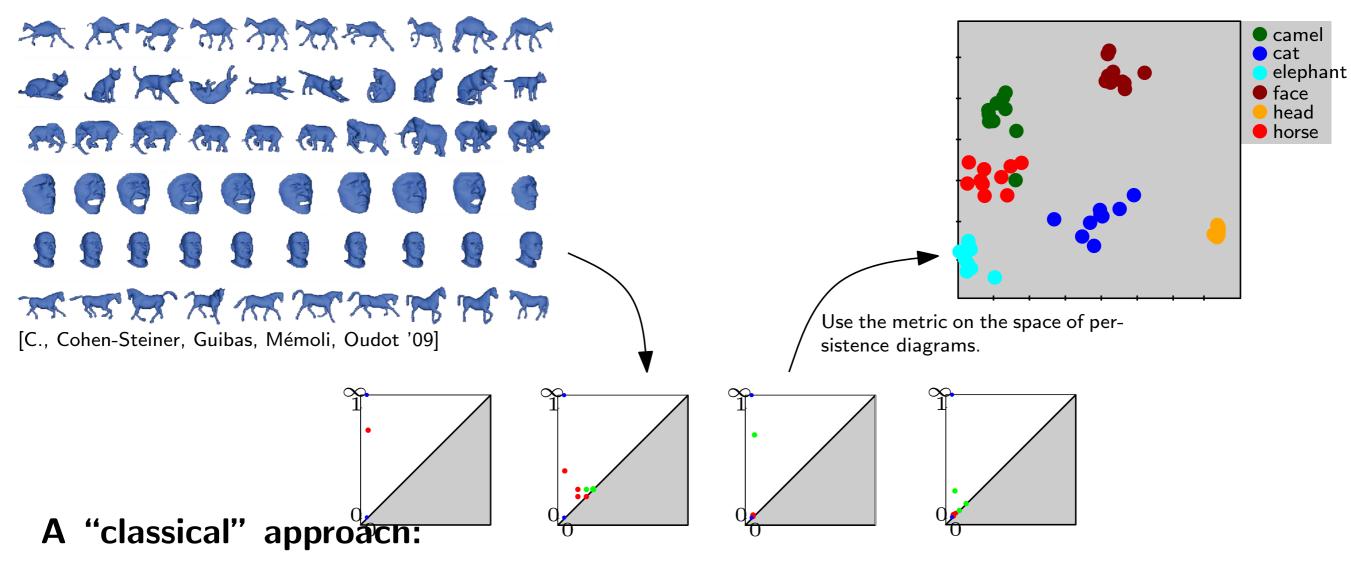
A "classical" approach:

• Build a geometric filtered simplicial complex on top of (X, ρ_X) (ρ_X being a metric/similarity on X).

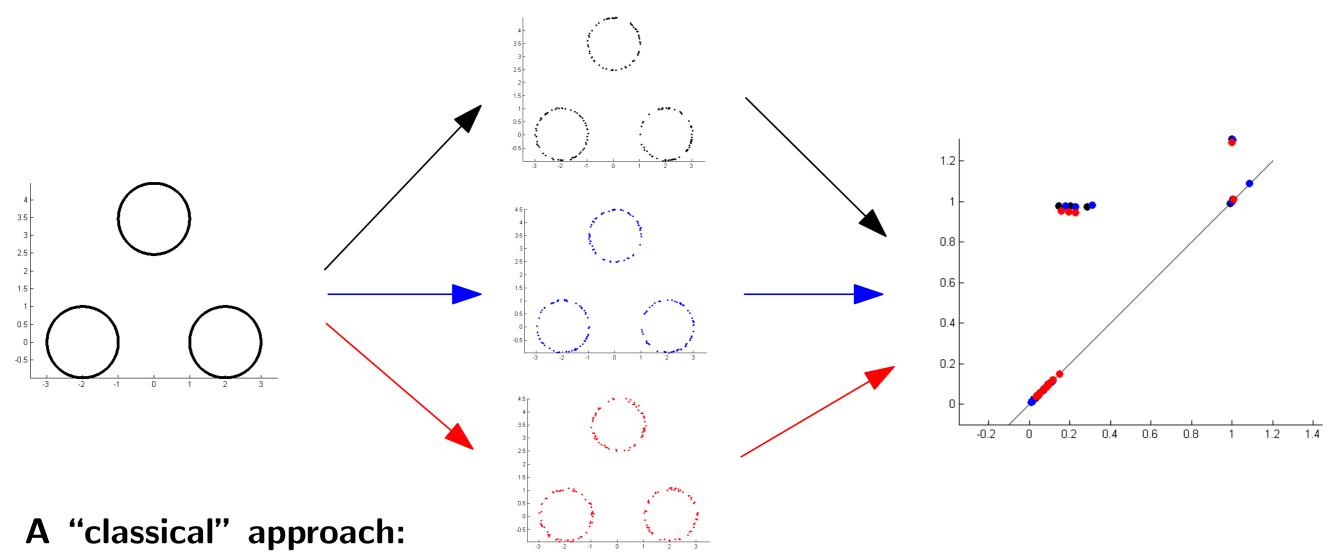


A "classical" approach:

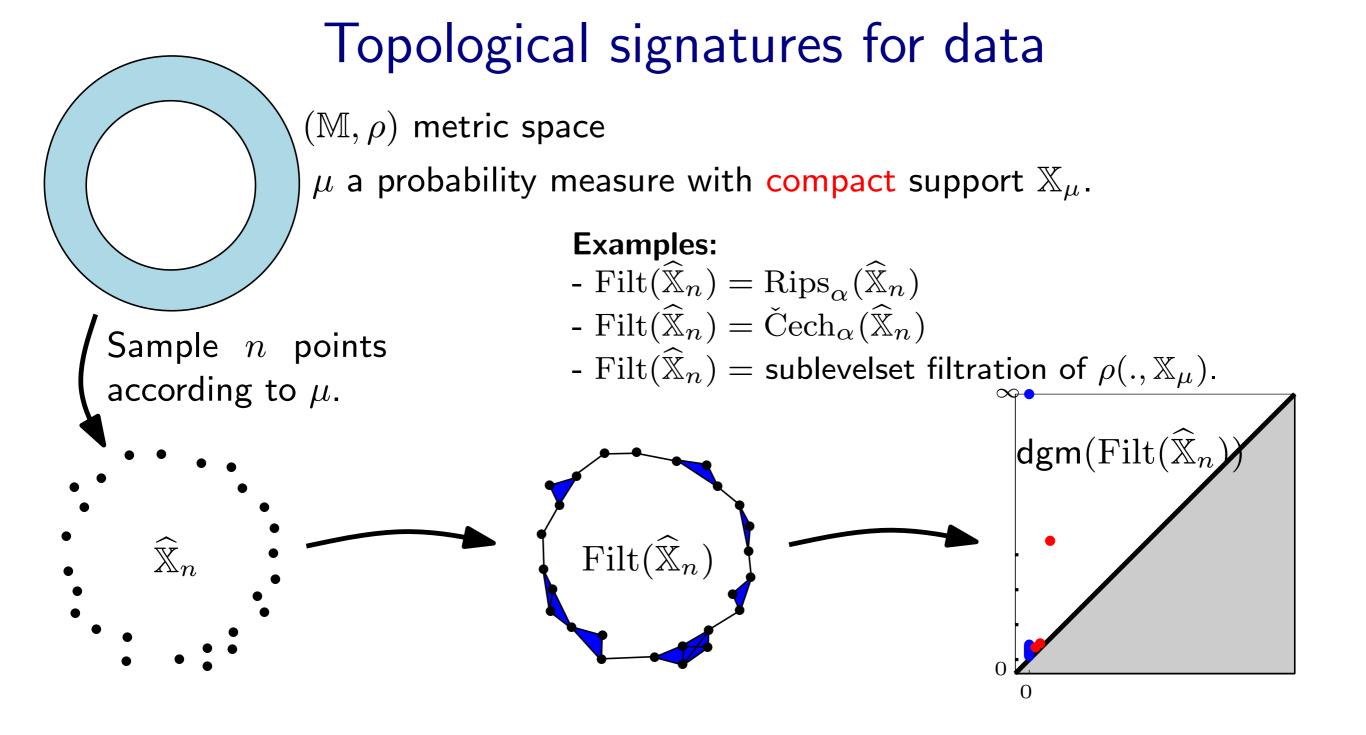
- Build a geometric filtered simplicial complex on top of (X, ρ_X) (ρ_X being a metric/similarity on X).
- Compute the persistent homology of the complex \rightarrow persistence diagrams: multiscale topological signature.



- Build a geometric filtered simplicial complex on top of (X, ρ_X) (ρ_X being a metric/similarity on X).
- Compute the persistent homology of the complex \rightarrow persistence diagrams: multiscale topological signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.

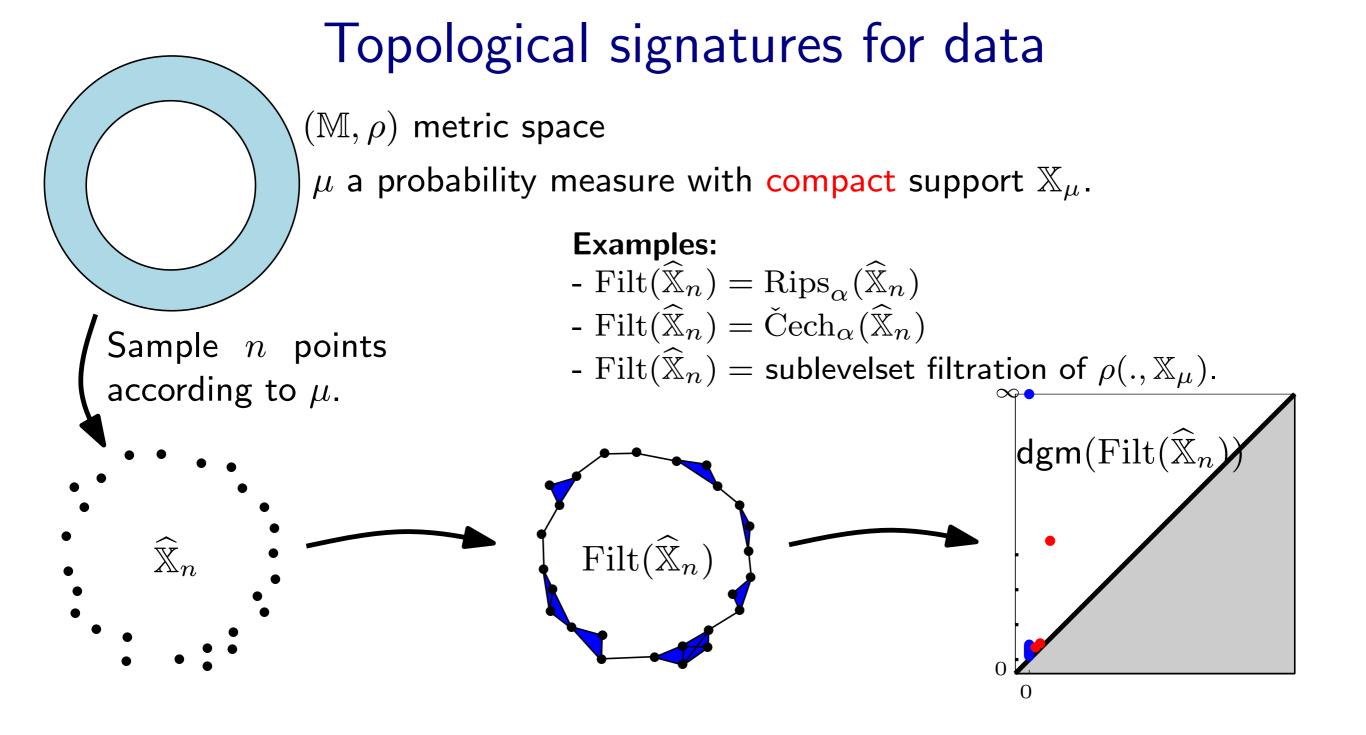


- Build a geometric filtered simplicial complex on top of (X, ρ_X) (ρ_X being a metric/similarity on X).
- Compute the persistent homology of the complex \rightarrow persistence diagrams: multiscale topological signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures?



Questions:

• Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_n$)) ? dgm(Filt($\widehat{\mathbb{X}}_n$)) \rightarrow ? as $n \rightarrow +\infty$?



Questions:

- Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_n$)) ? dgm(Filt($\widehat{\mathbb{X}}_n$)) \rightarrow ? as $n \rightarrow +\infty$?
- Is dgm(Filt(X_μ)) well-defined? (not obvious, even when X_μ is a compact smooth submanifold of R^d) Stability properties?

Filt(X_{μ}): persistence and stability of filtrations built on top of (pre)compact metric spaces

Filtered complexes

A filtered simplicial complex S built on top of a set X is a family $(S_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex \overline{S} with vertex set X s. t. $S_a \subseteq S_b$ for any $a \leq b$.

Examples: Let (X, ρ) be a metric space.

The Vietoris-Rips and Čech complexes Rips(X) and Čech(X) are the filtered complexes defined by: for a ∈ R,

$$[x_0, x_1, \cdots, x_k] \in \operatorname{Rips}(\mathbb{X}, a) \Leftrightarrow \rho(x_i, x_j) \le a, \text{ for all } i, j$$

$$[x_0, x_1, \dots, x_k] \in \check{\operatorname{Cech}}(\mathbb{X}, a) \quad \Leftrightarrow \quad \bigcap_{i=0}^k B(x_i, a) \neq \emptyset,$$

where $B(x, a) = \{x' \in \mathbb{X} : \rho(x, x') \le a\}.$

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Examples:

- Let S be a filtered simplicial complex. If V_a = H(S_a) and v^b_a : H(S_a) → H(S_b) is the linear map induced by the inclusion S_a → S_b then (H(S_a) | a ∈ R) is a persistence module.
- Given a metric space (X, ρ) , H(Rips(X)) is a persistence module.
- Given a metric space (X, ρ) , $H(\check{Cech}(X))$ is a persistence module.
- If $X \subset (M, \rho)$ and $d_X = \rho(., X)$, then $(H(d_X^{-1}([0, a])) \mid a \in \mathbf{R})$ is a persistence module.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

```
Theorem [CCGGO'09-CdSGO'12]:
```

q-tame persistence modules have well-defined persistence diagrams.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

Theorem [CCGGO'09-CdSGO'12]: q-tame persistence modules have well-defined persistence diagrams.

Theorem[CdSO'12]: Let X be a precompact metric space. Then H(Rips(X)) and $H(\check{C}ech(X))$ are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

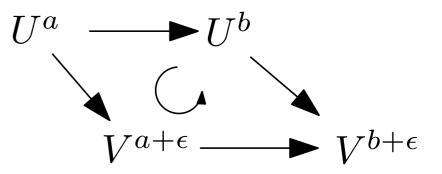
Recall that a metric space (X, ρ) is precompact if for any $\epsilon > 0$ there exists a finite subset $F_{\epsilon} \subset X$ such that $d_H(X, F_{\epsilon}) < \epsilon$ (i.e. $\forall x \in X, \exists p \in F_{\epsilon} \text{ s.t. } \rho(x, p) < \epsilon$).

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

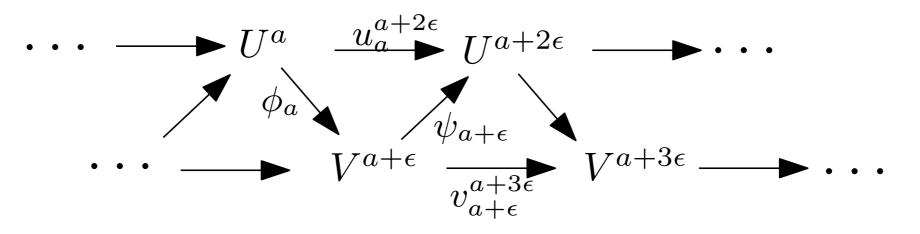
A homomorphism of degree ϵ between two persistence modules $\mathbb U$ and $\mathbb V$ is a collection Φ of linear maps

$$(\phi_a: U_a \to V_{a+\epsilon} \mid a \in \mathbf{R})$$

such that $v_{a+\epsilon}^{b+\epsilon} \circ \phi_a = \phi_b \circ u_a^b$ for all $a \leq b$.



An ε -interleaving between \mathbb{U} and \mathbb{V} is specified by two homomorphisms of degree ϵ $\Phi : \mathbb{U} \to \mathbb{V}$ and $\Psi : \mathbb{V} \to \mathbb{U}$ s.t. $\Phi \circ \Psi$ and $\Psi \circ \Phi$ are the "shifts" of degree 2ϵ between \mathbb{U} and \mathbb{V} .



Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Theorem [CCGGO'09-CdSGO'12]: If $\mathbb U$ and $\mathbb V$ are q-tame and ϵ -interleaved for some $\epsilon\geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

```
Stability Theorem [CCGGO'09-CdSGO'12]: If \mathbb U and \mathbb V are q-tame and \epsilon-interleaved for some \epsilon \geq 0 then
```

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Strategy: build filtered complexes on top of metric spaces that induce **q-tame** homology persistence modules and that turns out to be ϵ -interleaved when the considered spaces are $O(\epsilon)$ -close.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

```
Stability Theorem [CCGGO'09-CdSGO'12]: If \mathbb U and \mathbb V are q-tame and \epsilon-interleaved for some \epsilon \geq 0 then
```

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

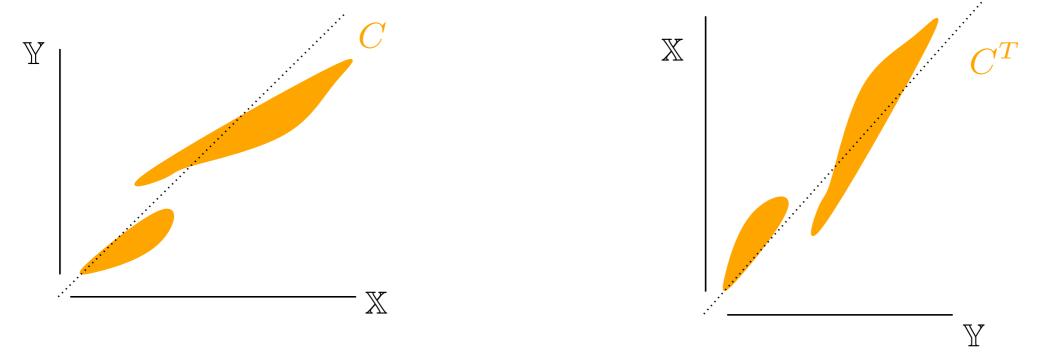
Strategy: build filtered complexes on top of metric spaces that induce **q-tame** homology persistence modules and that turns out to be ϵ -interleaved when the considered spaces are $O(\epsilon)$ -close.

Need to be defined.

Multivalued maps and correspondences X C X C X V X V X V X V X V V X V V V V V V

A multivalued map $C : \mathbb{X} \Rightarrow \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

Multivalued maps and correspondences

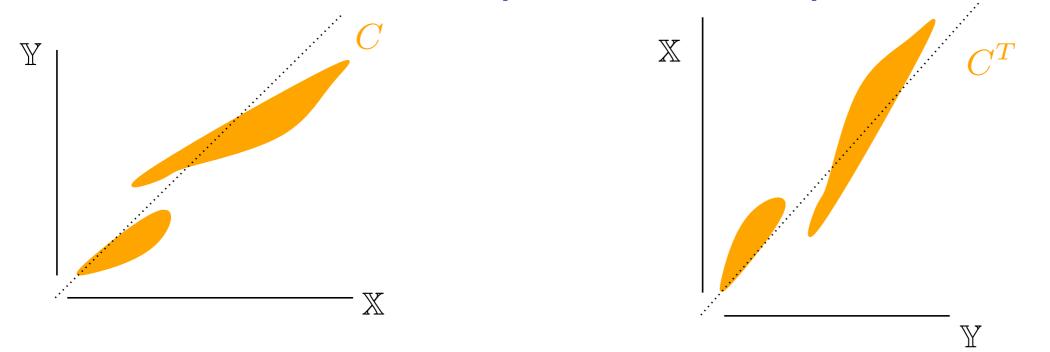


A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto \mathbb{X} through the canonical projection $\pi_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

The transpose of C, denoted C^T , is the image of C through the symmetry map $(x, y) \mapsto (y, x)$.

A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is a correspondence if C^T is also a multivalued map.

Multivalued maps and correspondences



A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ from a set \mathbb{X} to a set \mathbb{Y} is a subset of $\mathbb{X} \times \mathbb{Y}$, also denoted C, that projects surjectively onto $\mathbb X$ through the canonical projection $\pi_{\mathbb{X}}: \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$. The image $C(\sigma)$ of a subset σ of \mathbb{X} is the canonical projection onto \mathbb{Y} of the preimage of σ through $\pi_{\mathbb{X}}$.

Example: ϵ -correspondence and Gromov-Hausdorff distance.

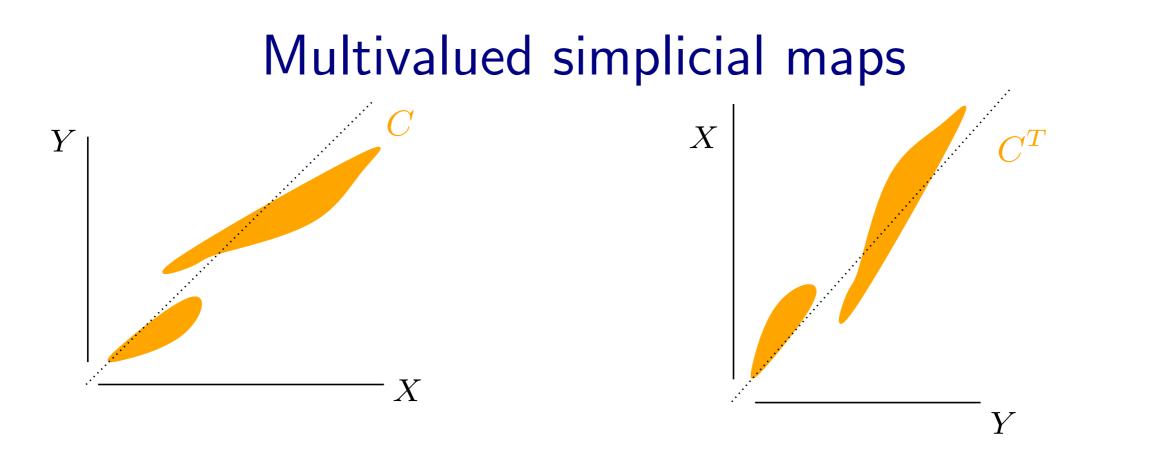
Let $(\mathbb{X}, \rho_{\mathbb{X}})$ and $(\mathbb{Y}, \rho_{\mathbb{Y}})$ be compact metric spaces. A correspondence $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is an ϵ -correspondence if $\forall (x, y), (x', y') \in C, |\rho_{\mathbb{X}}(x, x') - \rho_{\mathbb{Y}}(y, y')| \leq \varepsilon.$

 ${\mathcal X}$ \mathcal{X}' $d_{GH}(\mathbb{X},\mathbb{Y}) = \frac{1}{2}\inf\{\varepsilon \ge 0 : \text{there exists an } \varepsilon\text{-correspondence between } \mathbb{X}\text{ and } \mathbb{Y}\}$

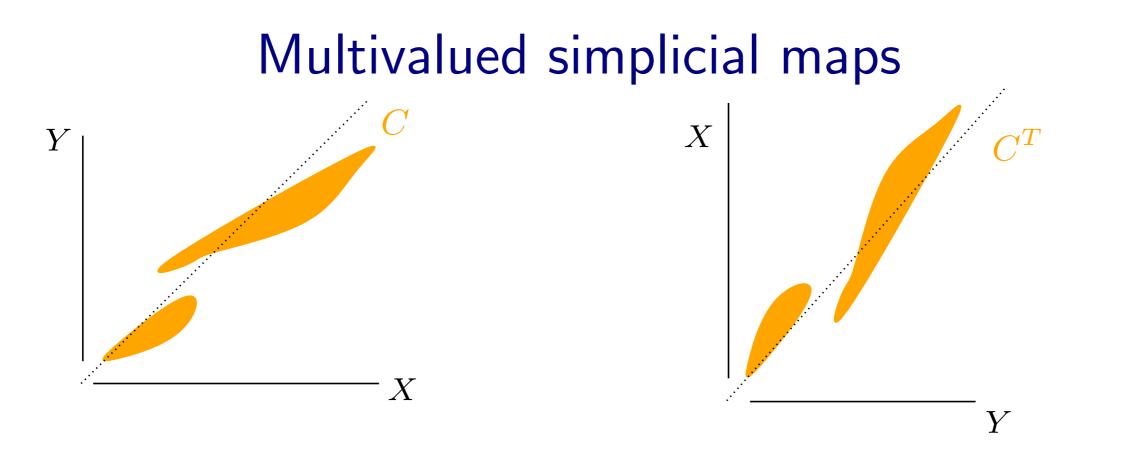
 \boldsymbol{y}

Y

 \mathbb{X}



Let \mathbb{S} and \mathbb{T} be two filtered simplicial complexes with vertex sets \mathbb{X} and \mathbb{Y} respectively. A multivalued map $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ is ε -simplicial from \mathbb{S} to \mathbb{T} if for any $a \in \mathbb{R}$ and any simplex $\sigma \in \mathbb{S}_a$, every finite subset of $C(\sigma)$ is a simplex of $\mathbb{T}_{a+\varepsilon}$.



Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively. A multivalued map $C : X \rightrightarrows Y$ is ε -simplicial from S to T if for any $a \in \mathbf{R}$ and any simplex $\sigma \in S_a$, every finite subset of $C(\sigma)$ is a simplex of $T_{a+\varepsilon}$.

Proposition: Let \mathbb{S} , \mathbb{T} be filtered complexes with vertex sets \mathbb{X} , \mathbb{Y} respectively. If $C : \mathbb{X} \Rightarrow \mathbb{Y}$ is a correspondence such that C and C^T are both ε -simplicial, then together they induce a canonical ε -interleaving between $H(\mathbb{S})$ and $H(\mathbb{T})$, the interleaving homomorphisms being H(C) and $H(C^T)$.

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}})$, $(\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\operatorname{Rips}(\mathbb{X}))$ and $H(\operatorname{Rips}(\mathbb{Y}))$ are ϵ -interleaved.

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x), y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x), y' \in C(x')$ so

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}}), (\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\check{C}ech(\mathbb{X}))$ and $H(\check{C}ech(\mathbb{Y}))$ are ϵ -interleaved.

Proposition: Let (X, ρ_X) , (Y, ρ_Y) be metric spaces. For any $\epsilon > 2d_{GH}(X, Y)$ the persistence modules H(Rips(X)) and H(Rips(Y)) are ϵ -interleaved.

Proof: Let $C : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a correspondence with distortion at most ϵ . If $\sigma \in \operatorname{Rips}(\mathbb{X}, a)$ then $\rho_{\mathbb{X}}(x, x') \leq a$ for all $x, x' \in \sigma$. Let $\tau \subseteq C(\sigma)$ be any finite subset. For any $y, y' \in \tau$ there exist $x, x' \in \sigma$ s. t. $y \in C(x), y' \in C(x')$ so $\exp(u, u') \leq \exp(x, x') \leq a + \epsilon$ and $\pi \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\rho_{\mathbb{Y}}(y, y') \le \rho_{\mathbb{X}}(x, x') \le a + \epsilon \text{ and } \tau \in \operatorname{Rips}(\mathbb{Y}, a + \epsilon)$

 $\Rightarrow C \text{ is } \epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{X}) \text{ to } \operatorname{Rips}(\mathbb{Y}).$ Symetrically, C^T is $\epsilon \text{-simplicial from } \operatorname{Rips}(\mathbb{Y}) \text{ to } \operatorname{Rips}(\mathbb{X}).$

Proposition: Let $(\mathbb{X}, \rho_{\mathbb{X}}), (\mathbb{Y}, \rho_{\mathbb{Y}})$ be metric spaces. For any $\epsilon > 2d_{GH}(\mathbb{X}, \mathbb{Y})$ the persistence modules $H(\check{C}ech(\mathbb{X}))$ and $H(\check{C}ech(\mathbb{Y}))$ are ϵ -interleaved.

Remark: Similar results for witness complexes (fixed landmarks)

Tameness of the Rips and Čech filtrations

Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm($H(\check{Cech}(X))$) are well-defined!

Tameness of the Rips and Čech filtrations

Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm($H(Rips(\mathbb{X}))$) and dgm($H(\check{Cech}(\mathbb{X}))$) are well-defined!

Theorem: Let \mathbb{X},\mathbb{Y} be precompact metric spaces. Then

 $d_{b}(\mathsf{dgm}(H(\check{C}ech(\mathbb{X}))),\mathsf{dgm}(H(\check{C}ech(\mathbb{Y})))) \leq 2d_{GH}(\mathbb{X},\mathbb{Y}),$

 $d_{\mathrm{b}}(\mathsf{dgm}(\mathrm{H}(\mathrm{Rips}(\mathbb{X}))),\mathsf{dgm}(\mathrm{H}(\mathrm{Rips}(\mathbb{Y})))) \leq 2d_{\mathrm{GH}}(\mathbb{X},\mathbb{Y}).$

Remark: The proofs never use the triangle inequality! The previous approch and results easily extend to other settings like, e.g. spaces endowed with a similarity measure.

Tameness of the Rips and Čech filtrations

Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X)) are q-tame.

As a consequence dgm($H(Rips(\mathbb{X}))$) and dgm($H(\check{Cech}(\mathbb{X}))$) are well-defined!

Theorem: Let \mathbb{X},\mathbb{Y} be precompact metric spaces. Then

 $d_{b}(\mathsf{dgm}(H(\check{C}ech(\mathbb{X}))),\mathsf{dgm}(H(\check{C}ech(\mathbb{Y})))) \leq 2d_{GH}(\mathbb{X},\mathbb{Y}),$

 $d_{b}(\mathsf{dgm}(H(\operatorname{Rips}(\mathbb{X}))),\mathsf{dgm}(H(\operatorname{Rips}(\mathbb{Y})))) \leq 2d_{\operatorname{GH}}(\mathbb{X},\mathbb{Y}).$

Remark: The proofs never use the triangle inequality! The previous approch and results easily extend to other settings like, e.g. spaces endowed with a similarity measure.

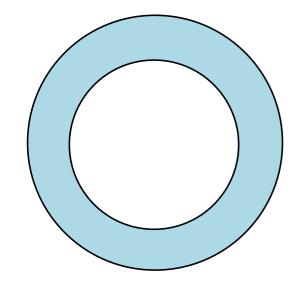
Theorem: Let (\mathbb{M}, ρ) be homeomorphic to a locally finite simplicial complex, let $\mathbb{X}, \mathbb{Y} \subset \mathbb{M}$ be compact and let $\operatorname{Filt}(\mathbb{X})$ and $\operatorname{Filt}(\mathbb{Y})$ be the sublevel set filtrations of $\rho(\mathbb{X}, .)$ and $\rho(\mathbb{Y}, .)$. Then $H(\operatorname{Filt}(\mathbb{X}))$ and $H(\operatorname{Filt}(\mathbb{Y}))$ are q-tame ^a and

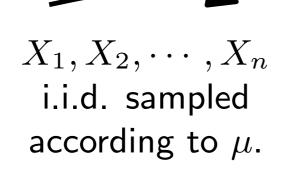
 $d_{\mathrm{b}}\left(\mathsf{dgm}(H(\mathrm{Filt}(\mathbb{X})), \mathsf{dgm}(H(\mathrm{Filt}(\mathbb{Y}))) \leq d_{H}(\mathbb{X}, \mathbb{Y})\right)$

^asee also [Landi et al 2013]

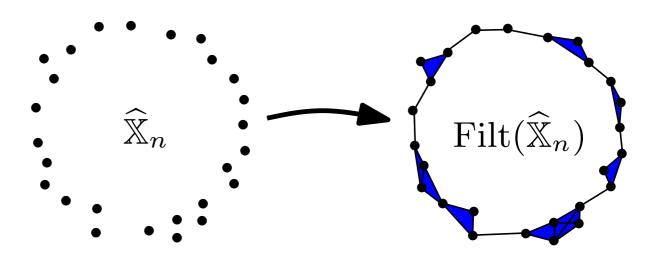
From stability to statistical properties

Statistical setting





 (\mathbb{M}, ρ) metric space μ a probability measure with compact support \mathbb{X}_{μ} .



Examples:

-
$$\operatorname{Filt}(\widehat{\mathbb{X}}_n) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_n)$$

 $\operatorname{Filt}(\widehat{\mathbb{X}}_n) = \check{\operatorname{Coob}}(\widehat{\mathbb{X}}_n)$

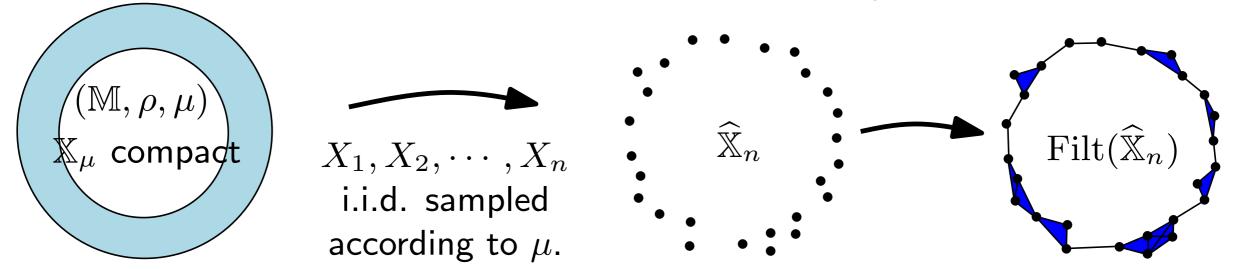
-
$$\operatorname{Filt}(\mathbb{X}_n) = \operatorname{Cech}_{\alpha}(\mathbb{X}_n)$$

- $\operatorname{Filt}(\mathbb{X}_n)$ = sublevelset filtration of $\rho(.,\mathbb{X}_\mu)$ (when \mathbb{M} is a triangulable space).

From the previous stability theorem, for any $\varepsilon > 0$,

$$\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})),\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{n}))\right) > \varepsilon\right) \leq \mathbb{P}\left(d_{GH}(\mathbb{X}_{\mu},\widehat{\mathbb{X}}_{n}) > \frac{\varepsilon}{2}\right)$$

Concentration inequality



For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

(M, ρ, μ) $X_{\mu} \text{ compact}$ $X_{1}, X_{2}, \cdots, X_{n}$ i.i.d. sampled according to μ . (M, ρ, μ) \widehat{X}_{n} \widehat{X}_{n} \widehat{X}_{n}

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Theorem: If μ satisfies the (a, b)-standard assumption, then for any $\varepsilon > 0$:

$$\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{n}))\right) > \varepsilon\right) \leq \min(\frac{8^{b}}{a\varepsilon^{b}}\exp(-na\varepsilon^{b}), 1).$$

Moreover
$$\lim_{n \to \infty} \mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{n}))\right) \leq C_{1}\left(\frac{\log n}{n}\right)^{1/b}\right) = 1.$$

where C_1 is a constant only depending on a and b.

Remark: \rightarrow Confidence intervals only depending on a and b (see also [Balakrishnan et al 2013] when \mathbb{X}_{μ} is a smooth manifold).

(M, ρ, μ) $X_{\mu} \text{ compact}$ $X_{1}, X_{2}, \cdots, X_{n}$ i.i.d. sampled $according to \mu.$ Concentration inequality \widehat{X}_{n} \widehat{X}_{n} $Filt(\widehat{X}_{n})$

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Sketch of proof:

- 1. Upperbound $\mathbb{P}\left(d_H(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_n) > \frac{\varepsilon}{2}\right)$.
- 2. (a, b) standard assumption \Rightarrow an explicit upperbound for the covering number of \mathbb{X}_{μ} (by balls of radius $\varepsilon/2$).
- 3. Apply "union bound" argument.

Minimax rate of convergence

Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of all the probability measures on the metric space (\mathbb{M}, ρ) satisfying the (a, b)-standard assumption on \mathbb{M} :

Minimax rate of convergence

Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of all the probability measures on the metric space (\mathbb{M}, ρ) satisfying the (a, b)-standard assumption on \mathbb{M} :

Theorem:

Let (\mathbb{M}, ρ) be a metric space and let a > 0 and b > 0. Then:

$$\sup_{\mu \in \mathcal{P}(a,b,\mathbb{M})} \mathbb{E}\left[\mathrm{d}_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{n})))\right] \leq C\left(\frac{\ln n}{n}\right)^{1/b}$$

where the constant C only depends on a and b (not on \mathbb{M} !). Assume moreover that there exists a non isolated point x in \mathbb{M} and consider any sequence $(x_n) \in (\mathbb{M} \setminus \{x\})^{\mathbb{N}}$ such that $\rho(x, x_n) \leq (an)^{-1/b}$. Then for any estimator $\widehat{\operatorname{dgm}}_n$ of $\operatorname{dgm}(\operatorname{Filt}(\mathbb{X}_{\mu}))$:

$$\liminf_{n \to \infty} \rho(x, x_n)^{-1} \sup_{\mu \in \mathcal{P}(a, b, \mathbb{M})} \mathbb{E} \left[\mathrm{d}_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \widehat{\mathsf{dgm}}_n) \right] \ge C'$$

where C' is an absolute constant.

Remark: we can obtain slightly better bounds if \mathbb{X}_{μ} is a submanifold of \mathbb{R}^{D} - see [Genovese, Perone-Pacifico, Verdinelli, Wasserman 2011, 2012]

Lecam's Lemma

Lemma:

Let \mathcal{P} be a set of proba distributions. For $\mu \in \mathcal{P}$, let $\theta(\mu)$ take values in a metric space $(\mathbb{X}, \rho_{\mathbb{X}})$. Let μ_0 and μ_1 in \mathcal{P} be any pair of distributions. Let X_1, \ldots, X_n be drawn i.i.d. from some $\mu \in \mathcal{P}$. Let $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ be any estimator of $\theta(\mu)$, then

$$\sup_{\mu \in \mathcal{P}} \mathbb{E}_{\mu^n} \rho_{\mathbb{X}}(\theta, \hat{\theta}) \ge \frac{1}{8} \rho_{\mathbb{X}} \left(\theta(\mu_0), \theta(\mu_1) \right) \left[1 - \mathrm{TV}(\mu_0, \mu_1) \right]^{2n}$$

where $TV(\mu_0, \mu_1) = \sup_{B \in \mathcal{B}} |\mu_0(B) - \mu_1(B)|$.

Lecam's Lemma

Lemma:

Let \mathcal{P} be a set of proba distributions. For $\mu \in \mathcal{P}$, let $\theta(\mu)$ take values in a metric space $(\mathbb{X}, \rho_{\mathbb{X}})$. Let μ_0 and μ_1 in \mathcal{P} be any pair of distributions. Let X_1, \ldots, X_n be drawn i.i.d. from some $\mu \in \mathcal{P}$. Let $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ be any estimator of $\theta(\mu)$, then

$$\sup_{\mu \in \mathcal{P}} \mathbb{E}_{\mu^{n}} \rho_{\mathbb{X}}(\theta, \hat{\theta}) \geq \frac{1}{8} \rho_{\mathbb{X}}\left(\theta(\mu_{0}), \theta(\mu_{1})\right) \left[1 - \mathrm{TV}(\mu_{0}, \mu_{1})\right]^{2n}$$

where $TV(\mu_0, \mu_1) = \sup_{B \in \mathcal{B}} |\mu_0(B) - \mu_1(B)|.$

In our case:

 $\mathcal{P} = \mathcal{P}(a, b, \mathbb{M}), (\mathbb{X}, \rho_{\mathbb{X}})$ is the space of persistence diagrams with $\rho_{\mathbb{X}} = d_B$ and $\theta(\mu) = \operatorname{dgm}(\operatorname{Filt}(\mathbb{X}_{\mu})).$

 $\mu_0 = \delta_x$ the Dirac mass at x and $\mu_1 = \frac{1}{n} \delta_{x_n} + (1 - \frac{1}{n}) \mu_0$ (they belong to \mathcal{P}).

$$TV(\mu_0, \mu_1) = \frac{2}{n}, \text{ so } [1 - TV(\mu_0, \mu_1)]^{2n} \to e^{-4} \text{ as } n \to \infty.$$

$$d_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_0)), \mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_1))) = \rho_{\mathbb{M}}(x, x_n)/2$$

References:

- F. Chazal, M. Glisse, C. Labruère, B. Michel, Optimal rates of convergence for persistence diagrams in Topological Data Analysis, http://arxiv.org/abs/1305.6239, May 2013.
- F. Chazal, V. de Silva, S. Oudot, Persistence Stability for Geometric complexes, arXiv:1207.3885, July 2012.
- F. Chazal, V. de Silva, M. Glisse, S. Oudot, The Structure and Stability of Persistence Modules, arXiv:1207.3674, July 2012.