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Introduction

• Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with possibly complex topological/geometric structure.

• TDA: infer relevant topological and geometric features of these spaces.
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A “classical” approach:

• Build a geometric filtered simplicial complex on top of (X, ⇢X) (⇢X being a
metric/similarity on X).
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Use the metric on the space of per-
sistence diagrams.[C., Cohen-Steiner, Guibas, Mémoli, Oudot ’09]

• Compare the signatures of “close” data sets ! robustness and stability results.



Topological signatures for data

A “classical” approach:

• Build a geometric filtered simplicial complex on top of (X, ⇢X) (⇢X being a
metric/similarity on X).

• Compute the persistent homology of the complex ! persistence diagrams: mul-
tiscale topological signature.

• Statistical properties of signatures?

• Compare the signatures of “close” data sets ! robustness and stability results.
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• Statistical properties of dgm(Filt(bXn)) ? dgm(Filt(bXn)) !? as n ! +1?
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µ a probability measure with compact support Xµ.

Sample n points
according to µ.

Examples:
- Filt(bXn) = Rips↵(bXn)

- Filt(bXn) = Čech↵(bXn)

- Filt(bXn) = sublevelset filtration of ⇢(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(bXn)) ? dgm(Filt(bXn)) !? as n ! +1?

• Is dgm(Filt(Xµ)) well-defined? (not obvious, even when Xµ is a compact smooth
submanifold of Rd) Stability properties?



Filt(Xµ): persistence and stability of

filtrations built on top of (pre)compact

metric spaces



Filtered complexes

A filtered simplicial complex S built on top of a set X is a family (Sa | a 2 R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ✓ Sb

for any a  b.

Examples: Let (X, ⇢) be a metric space.

• The Vietoris-Rips and Čech complexes Rips(X) and Čech(X) are the filtered
complexes defined by: for a 2 R,

[x0, x1, · · · , xk] 2 Rips(X, a) , ⇢(xi, xj)  a, for all i, j

[x0, x1, . . . , xk] 2 Čech(X, a) ,
k\

i=0

B(xi, a) 6= ;,

where B(x, a) = {x0 2 X : ⇢(x, x0)  a}.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a 2
R) and a doubly-indexed family of linear maps (vba : Va ! Vb | a  b) which satisfy
the composition law vcb � vba = vca whenever a  b  c, and where vaa is the identity
map on Va.

Examples:

• Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa) ! H(Sb)
is the linear map induced by the inclusion Sa ,! Sb then (H(Sa) | a 2 R) is
a persistence module.

• Given a metric space (X, ⇢) , H(Rips(X)) is a persistence module.

• Given a metric space (X, ⇢) , H(Čech(X)) is a persistence module.

• If X ⇢ (M, ⇢) and dX = ⇢(.,X), then (H(d�1
X ([0, a])) | a 2 R) is a persistence

module.
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R) and a doubly-indexed family of linear maps (vba : Va ! Vb | a  b) which satisfy
the composition law vcb � vba = vca whenever a  b  c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem [CCGGO’09-CdSGO’12]:
q-tame persistence modules have well-defined persistence diagrams.
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Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem [CCGGO’09-CdSGO’12]:
q-tame persistence modules have well-defined persistence diagrams.

Recall that a metric space (X, ⇢) is precompact if for any ✏ > 0 there exists a finite subset
F✏ ⇢ X such that dH(X, F✏) < ✏ (i.e. 8x 2 X, 9p 2 F✏ s.t. ⇢(x, p) < ✏).

Theorem[CdSO’12]: Let X be a precompact metric space. Then H(Rips(X)) and
H(Čech(X)) are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a 2
R) and a doubly-indexed family of linear maps (vba : Va ! Vb | a  b) which satisfy
the composition law vcb � vba = vca whenever a  b  c, and where vaa is the identity
map on Va.

A homomorphism of degree ✏ between two persis-
tence modules U and V is a collection � of linear
maps

(�a : Ua ! Va+✏ | a 2 R)

such that vb+✏
a+✏ � �a = �b � ub

a for all a  b.

U

a
U

b

V

a+✏
V

b+✏

An "-interleaving between U and V is specified by two homomorphisms of degree ✏
� : U ! V and  : V ! U s.t. � �  and  � � are the “shifts” of degree 2✏
between U and V.

U
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· · ·
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the composition law vcb � vba = vca whenever a  b  c, and where vaa is the identity
map on Va.

Stability Theorem [CCGGO’09-CdSGO’12]:
If U and V are q-tame and ✏-interleaved for some ✏ � 0 then

dB(dgm(U), dgm(V))  ✏
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considered spaces are O(✏)-close.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (Va | a 2
R) and a doubly-indexed family of linear maps (vba : Va ! Vb | a  b) which satisfy
the composition law vcb � vba = vca whenever a  b  c, and where vaa is the identity
map on Va.

Stability Theorem [CCGGO’09-CdSGO’12]:
If U and V are q-tame and ✏-interleaved for some ✏ � 0 then

dB(dgm(U), dgm(V))  ✏

Strategy: build filtered complexes on top of metric spaces that induce q-tame
homology persistence modules and that turns out to be ✏-interleaved when the
considered spaces are O(✏)-close.

Need to be defined.



Multivalued maps and correspondences

A multivalued map C : X ◆ Y from a set X to a set Y is a subset of X ⇥ Y,
also denoted C, that projects surjectively onto X through the canonical projection
⇡X : X ⇥ Y ! X. The image C(�) of a subset � of X is the canonical projection
onto Y of the preimage of � through ⇡X.
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The transpose of C, denoted CT , is the image of C through the symmetry map
(x, y) 7! (y, x).

A multivalued map C : X ◆ Y is a correspondence if CT is also a multivalued map.



Multivalued maps and correspondences

A multivalued map C : X ◆ Y from a set X to a set Y is a subset of X ⇥ Y,
also denoted C, that projects surjectively onto X through the canonical projection
⇡X : X ⇥ Y ! X. The image C(�) of a subset � of X is the canonical projection
onto Y of the preimage of � through ⇡X.
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Example: ✏-correspondence and Gromov-Hausdor↵ distance.

Let (X, ⇢X) and (Y, ⇢Y) be compact metric spaces.
A correspondence C : X ◆ Y is an ✏-correspondence if
8(x, y), (x0, y0) 2 C, |⇢X(x, x0)� ⇢Y(y, y

0)|  ".

dGH(X,Y) = 1

2
inf{" � 0 : there exists an "-correspondence between Xand Y}

Y

X

C

x x0

y

y0



Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X ◆ Y is "-simplicial from S to T if for any a 2 R and any
simplex � 2 Sa, every finite subset of C(�) is a simplex of Ta+".
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Multivalued simplicial maps

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C : X ◆ Y is "-simplicial from S to T if for any a 2 R and any
simplex � 2 Sa, every finite subset of C(�) is a simplex of Ta+".
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Y

C

Y

X CT

Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively.
If C : X ◆ Y is a correspondence such that C and CT are both "-simplicial,
then together they induce a canonical "-interleaving between H(S) and H(T), the
interleaving homomorphisms being H(C) and H(CT ).



The example of the Rips and

ˇ

Cech filtration

Proposition: Let (X, ⇢X), (Y, ⇢Y) be metric spaces. For any ✏ > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ✏-interleaved.
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Proposition: Let (X, ⇢X), (Y, ⇢Y) be metric spaces. For any ✏ > 2dGH(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are ✏-interleaved.

Proof: Let C : X ◆ Y be a correspondence with distortion at most ✏.
If � 2 Rips(X, a) then ⇢X(x, x0)  a for all x, x0 2 �.
Let ⌧ ✓ C(�) be any finite subset.
For any y, y0 2 ⌧ there exist x, x0 2 � s. t. y 2 C(x), y0 2 C(x0) so

⇢Y(y, y
0)  ⇢X(x, x

0)  a+ ✏ and ⌧ 2 Rips(Y, a+ ✏)

) C is ✏-simplicial from Rips(X) to Rips(Y).
Symetrically, CT is ✏-simplicial from Rips(Y) to Rips(X).
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Remark: Similar results for witness complexes (fixed landmarks)
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Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Theorem: Let X,Y be precompact metric spaces. Then
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Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.
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Cech filtrations

Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Čech(X))
are q-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Čech(X))) are well-defined!

Theorem: Let X,Y be precompact metric spaces. Then

db(dgm(H(Čech(X))), dgm(H(Čech(Y))))  2dGH(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y))))  2dGH(X,Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.

Theorem: Let (M, ⇢) be homeomorphic to a locally finite simplicial complex, let
X,Y ⇢ M be compact and let Filt(X) and Filt(Y) be the sublevel set filtrations of
⇢(X, .) and ⇢(Y, .). Then H(Filt(X)) and H(Filt(Y)) are q-tame a and

db (dgm(H(Filt(X)), dgm(H(Filt(Y)))  dH(X,Y)
asee also [Landi et al 2013]



From stability to statistical properties



Statistical setting

bXn Filt(bXn)

(M, ⇢) metric space
µ a probability measure
with compact support Xµ.

X1, X2, · · · , Xn

i.i.d. sampled
according to µ.

Examples:
- Filt(bXn) = Rips↵(

bXn)

- Filt(bXn) = Čech↵(bXn)

- Filt(bXn) = sublevelset filtration of
⇢(.,Xµ) (when M is a triangulable space).

P
⇣
db

⇣
dgm(Filt(Xµ)), dgm(Filt(bXn))

⌘
> "
⌘
 P

⇣
dGH(Xµ, bXn) >

"
2

⌘
From the previous stability theorem, for any " > 0,



Concentration inequality
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(M, ⇢, µ)

X1, X2, · · · , Xn

i.i.d. sampled
according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x 2 Xµ and any
r > 0, we have µ(B(x, r)) � min(arb, 1).

Xµ compact



Concentration inequality

bXn Filt(bXn)

(M, ⇢, µ)

X1, X2, · · · , Xn

i.i.d. sampled
according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x 2 Xµ and any
r > 0, we have µ(B(x, r)) � min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any " > 0:

P
⇣
db

⇣
dgm(Filt(Xµ)), dgm(Filt(bXn))

⌘
> "
⌘
 min(

8b

a"b
exp(�na"b), 1).

Moreover lim
n!1

P
 
db

⇣
dgm(Filt(Xµ)), dgm(Filt(bXn))

⌘
 C1

✓
log n
n

◆1/b
!

= 1.

where C1 is a constant only depending on a and b.

Xµ compact

Remark: ! Confidence intervals only depending on a and b (see also [Balakrishnan
et al 2013] when Xµ is a smooth manifold).



Concentration inequality

bXn Filt(bXn)

(M, ⇢, µ)

X1, X2, · · · , Xn

i.i.d. sampled
according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x 2 Xµ and any
r > 0, we have µ(B(x, r)) � min(arb, 1).

Sketch of proof:

1. Upperbound P
⇣
dH(Xµ, bXn) > "

2

⌘
.

2. (a, b) standard assumption ) an explicit upperbound for the covering number
of Xµ (by balls of radius "/2).

3. Apply “union bound” argument.

Xµ compact



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ⇢)
satisfying the (a, b)-standard assumption on M:



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ⇢)
satisfying the (a, b)-standard assumption on M:

Let (M, ⇢) be a metric space and let a > 0 and b > 0. Then:

sup
µ2P(a,b,M)

E
h
db(dgm(Filt(Xµ)), dgm(Filt(bXn)))

i
 C

✓
lnn
n

◆1/b

where the constant C only depends on a and b (not on M!). Assume more-
over that there exists a non isolated point x in M and consider any sequence
(xn) 2 (M \ {x})N such that ⇢(x, xn)  (an)�1/b. Then for any estimator ddgmn

of dgm(Filt(Xµ)):

lim inf
n!1

⇢(x, xn)
�1 sup

µ2P(a,b,M)

E
h
db(dgm(Filt(Xµ)), ddgmn)

i
� C0

where C0 is an absolute constant.

Theorem:

Remark: we can obtain slightly better bounds if Xµ is a submanifold of RD - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]



Lecam’s Lemma

Let P be a set of proba distributions. For µ 2 P, let ✓(µ) take values in a metric
space (X, ⇢X). Let µ0 and µ1 in P be any pair of distributions. Let X1, . . . , Xn be
drawn i.i.d. from some µ 2 P. Let ✓̂ = ✓̂(X1, . . . , Xn) be any estimator of ✓(µ),
then

sup
µ2P

Eµn⇢X(✓, ✓̂) �
1

8
⇢X (✓(µ0), ✓(µ1)) [1� TV(µ0, µ1)]

2n .

where TV(µ0, µ1) = supB2B |µ0(B)� µ1(B)|.

Lemma:



Lecam’s Lemma

Let P be a set of proba distributions. For µ 2 P, let ✓(µ) take values in a metric
space (X, ⇢X). Let µ0 and µ1 in P be any pair of distributions. Let X1, . . . , Xn be
drawn i.i.d. from some µ 2 P. Let ✓̂ = ✓̂(X1, . . . , Xn) be any estimator of ✓(µ),
then

sup
µ2P

Eµn⇢X(✓, ✓̂) �
1

8
⇢X (✓(µ0), ✓(µ1)) [1� TV(µ0, µ1)]

2n .

where TV(µ0, µ1) = supB2B |µ0(B)� µ1(B)|.

Lemma:

In our case:

P = P(a, b,M), (X, ⇢X) is the space of persistence diagrams with ⇢X = dB and
✓(µ) = dgm(Filt(Xµ)).

µ0 = �x the Dirac mass at x and µ1 = 1
n
�xn + (1� 1

n
)µ0 (they belong to P).

TV(µ0, µ1) =
2
n
, so [1� TV(µ0, µ1)]

2n ! e�4 as n ! 1.

db(dgm(Filt(X0)), dgm(Filt(X1))) = ⇢M(x, xn)/2

· · ·
xn

x· · ·
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