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e Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with possibly complex topological /geometric structure.

e TDA: infer relevant topological and geometric features of these spaces.
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— 1-dimensional homology generators

A “classical” approach:

e Build a geometric filtered simplicial complex on top of (X, px) (px being a
metric/similarity on X).
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A “classical” approach:

e Build a geometric filtered simplicial complex on top of (X, px) (px being a
metric/similarity on X).

e Compute the persistent homology of the complex — persistence diagrams: mul-
tiscale topological signature.
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[C., Cohen-Steiner, Guibas, Mémoli, Oudot '09]

Use the metric on the space of per-
sistence diagrams.
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e Build a geometric filtered simplicial complex on top of (X, px) (px being a

metric/similarity on X).

e Compute the persistent homology of the complex — persistence diagrams: mul-

tiscale topological signature.

e Compare the signatures of “close” data sets — robustness and stability results.
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A “classical’ approach: A

Build a geometric filtered simplicial complex on top of (X, px) (px being a
metric/similarity on X).

Compute the persistent homology of the complex — persistence diagrams: mul-
tiscale topological signature.

Compare the signatures of “close” data sets — robustness and stability results.

Statistical properties of signatures?
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(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
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Sample oints -~
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Questions:
e Statistical properties of dgm(Filt(X,,)) ? dgm(Filt(X,)) —? as n — 4007



Topological signatures for data

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
- Filt(X,,) = Rips, (Xn)
_ - Filt(in) — Cechyg, (Xn)
Sample oints -~
le P - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. S

AN

dgm(Filt(X,

Questions:
e Statistical properties of dgm(Filt(X,,)) ? dgm(Filt(X,)) —? as n — 4007

o Is dgm(Filt(X,)) well-defined? (not obvious, even when X, is a compact smooth
submanifold of R%) Stability properties?



Filt(X,): persistence and stability of
filtrations built on top of (pre)compact
metric spaces



Filtered complexes

A filtered simplicial complex S built on top of a set X is a family (S, | a € R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. S, C Sy
for any a < b.

Examples: Let (X, p) be a metric space.

e The Vietoris-Rips and Cech complexes Rips(X) and Cech(X) are the filtered
complexes defined by: for a € R,

[330,331, T 73374] S RlpS(X7 CL) A p(x’ij) < a, for all 2, ]
k

xo,T1,...,2k] € Cech(X,a) <« ﬂ B(xi,a) # 0,
i=0

where B(z,a) = {2’ € X : p(x,2") < a}.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Examples:

o Let S be a filtered simplicial complex. If V, = H(S,) and v : H(S,) — H(Ss)
is the linear map induced by the inclusion S, < S; then (H(S,) | a € R) is
a persistence module.

e Given a metric space (X, p) , H(Rips(X)) is a persistence module.
e Given a metric space (X, p) , H(Cech(X)) is a persistence module.

e If X C (M,p)and dx = p(.,X), then (H(dy; " ([0,a])) | a € R) is a persistence
module.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v’ has a finite rank.

Theorem [CCGGO’'09-CdSGO'12]:
g-tame persistence modules have well-defined persistence diagrams.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v’ has a finite rank.

Theorem [CCGGO’'09-CdSGO'12]:
g-tame persistence modules have well-defined persistence diagrams.

Theorem[CdSO'12]: Let X be a precompact metric space. Then H(Rips(X)) and
H(Cech(X)) are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!

Recall that a metric space (X, p) is precompact if for any € > 0 there exists a finite subset
Fe C X such that dy (X, F¢) < e (i.e. Vx € X,dp € F¢ s.t. p(x,p) < €).



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v = v¢ whenever a < b < ¢, and where v? is the identity

map on V.
A homomorphism of deg-ree € betwe.en two pgrsis— [7a [7b
tence modules U and V is a collection ® of linear
maps \ () \
(0 : Uy = Vate | a € R) ote — pp J/bFe

such that vgiz O (pg = p © ug for all a <b.

An e-interleaving between U and V is specified by two homomorphisms of degree ¢
®:U—->Vand ¥ :V 5> Ust. oV and ¥ o & are the “shifts” of degree 2¢

between U and V.

2
[]& aa—i_; Ua—|—2€

N AN

> Va—l—e a+3€ Va—l—Se -
Ua—|—e



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €
R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy
the composition law v¢ o v = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Stability Theorem [CCGGO'09-CdSGO'12]:
If U and V are g-tame and e-interleaved for some € > 0 then

dp(dgm(U),dgm(V)) < e



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €
R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy
the composition law v¢ o v = v¢ whenever a < b < ¢, and where v? is the identity

a —

map on V.

Stability Theorem [CCGGO'09-CdSGO'12]:
If U and V are g-tame and e-interleaved for some € > 0 then

dp(dgm(U),dgm(V)) < e

Strategy: build filtered complexes on top of metric spaces that induce g-tame
homology persistence modules and that turns out to be e-interleaved when the

considered spaces are O(¢)-close.



Tame persistent modules

Definition: A persistence module V is an indexed family of vector spaces (V, | a €
R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy
the composition law v¢ o v = v¢ whenever a < b < ¢, and where v? is the identity

a —

map on V.

Stability Theorem [CCGGO'09-CdSGO'12]:
If U and V are g-tame and e-interleaved for some € > 0 then

dp(dgm(U),dgm(V)) < ¢

Strategy: build filtered complexes on top of metric spaces that induce g-tame
homology persistence modules and that turns out to be e-interleaved when the

considered spaces are

Need to be defined.



Multivalued maps and correspondences

Y X

X

Y
A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,
also denoted (', that projects surjectively onto X through the canonical projection
mx : X X Y — X. The image C(o0) of a subset ¢ of X is the canonical projection
onto Y of the preimage of o through 7x.



Multivalued maps and correspondences

Y X

X

Y
A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,

also denoted (', that projects surjectively onto X through the canonical projection

mx : X X Y — X. The image C(o0) of a subset ¢ of X is the canonical projection
onto Y of the preimage of o through 7x.

The transpose of C, denoted C?, is the image of C through the symmetry map
(z,y) = (y,2).

A multivalued map C : X = Y is a correspondence if C* is also a multivalued map.



Multivalued maps and correspondences

Y X

X

Y

A multivalued map C' : X = Y from a set X to a set Y is a subset of X X VY,
also denoted (', that projects surjectively onto X through the canonical projection
mx : X X Y — X. The image C(o0) of a subset ¢ of X is the canonical projection

onto Y of the preimage of o through 7x.

Example: e-correspondence and Gromov-Hausdorff distance.

Y
Let (X, px) and (Y, py) be compact metric spaces. ,
A correspondence C' : X = Y is an e-correspondence if J
V(z,y), (2',y") € C, |px(x,2") — py(y,y")| < e. /

1

dap(X,Y) = 5 inf{e > 0 : there exists an e-correspondence between Xand Y}



Multivalued simplicial maps

X

Y

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C' : X = Y is e-simplicial from S to T if for any a € R and any
simplex o € S,, every finite subset of C (o) is a simplex of T,..



Multivalued simplicial maps

X

Y

Let S and T be two filtered simplicial complexes with vertex sets X and Y respectively.
A multivalued map C' : X = Y is e-simplicial from S to T if for any a € R and any
simplex o € S,, every finite subset of C (o) is a simplex of T,..

Proposition: Let S, T be filtered complexes with vertex sets X, Y respectively.
If C : X = Y is a correspondence such that C and C? are both e-simplicial,
then together they induce a canonical e-interleaving between H(S) and H(T), the
interleaving homomorphisms being H(C) and H(C™).



The example of the Rips and Cech filtration

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.



The example of the Rips and Cech filtration

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") < a for all z,2" € 0.

Let 7 C C(0) be any finite subset.

For any v,y € T thereexist z,2' € os. t. y € C(x), vy € C(z') so

py(y,y') < px(z,2") < a+eand 7 € Rips(Y,a + ¢)

= (' is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C" is e-simplicial from Rips(Y) to Rips(X).
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The example of the Rips and Cech filtration

Proposition: Let (X, px), (Y, py) be metric spaces. For any € > 2dgu(X,Y) the
persistence modules H(Rips(X)) and H(Rips(Y)) are e-interleaved.

Proof: Let (': X = Y be a correspondence with distortion at most e.
f o € Rips(X, a) then px(z,2") < a for all z,2" € 0.

Let 7 C C(0) be any finite subset.

For any v,y € T thereexist z,2' € os. t. y € C(x), vy € C(z') so

py(y,y') < px(z,2") < a+eand 7 € Rips(Y,a + ¢)

= (' is e-simplicial from Rips(X) to Rips(Y).
Symetrically, C" is e-simplicial from Rips(Y) to Rips(X).

Proposition: Let (X, px), (Y, py) be metric spaces. For any ¢ > 2dgu(X,Y) the
persistence modules H(Cech(X)) and H(Cech(Y)) are e-interleaved.

Remark: Similar results for witness complexes (fixed landmarks)



Tameness of the Rips and Cech filtrations

Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X))
are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!



Tameness of the Rips and Cech filtrations

Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X))
are g-tame.

As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!

Theorem: Let X, Y be precompact metric spaces. Then
dp, (dgm(H(Cech(X))), dgm(H(Cech(Y)))) < 2dau(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) < 2dan (X, Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.



Tameness of the Rips and Cech filtrations

Theorem: Let X be a precompact metric space. Then H(Rips(X)) and H(Cech(X))

are g-tame.
As a consequence dgm(H(Rips(X))) and dgm(H(Cech(X))) are well-defined!

Theorem: Let X, Y be precompact metric spaces. Then
dp, (dgm(H(Cech(X))), dgm(H(Cech(Y)))) < 2dau(X,Y),

db(dgm(H(Rips(X))), dgm(H(Rips(Y)))) < 2dan (X, Y).

Remark: The proofs never use the triangle inequality! The previous approch and results
easily extend to other settings like, e.g. spaces endowed with a similarity measure.

Theorem: Let (M, p) be homeomorphic to a locally finite simplicial complex, let
X,Y C M be compact and let Filt(X) and Filt(Y) be the sublevel set filtrations of

p(X,.) and p(Y,.). Then H(Filt(X)) and H(Filt(Y)) are g-tame ° and

dy, (dgm(H (Filt(X)), dgm(H (Filt(Y))) < du (X, Y)

?see also [Landi et al 2013]



From stability to statistical properties



Statistical setting

N e
X17X2)... 7X’n, o. X’n o
I.I.d. sampled ‘. . ,°
according to p. ¢ o .°
(M, p) metric space
(4 a probability measure Examples: ~
- Filt(X ) = Rips,, (X )

with compact support X, .
- Filt(X,,) = Cechq (X,,)

- Filt(X,) = sublevelset filtration of
p(.,X,) (when M is a triangulable space).

From the previous stability theorem, for any € > 0,

P (db (dgm(Fﬂt(X“)), dgm(Fﬂt(Xﬂ,))) > 5) <P (dGH(XM,Xn) > %)



Concentration inequality

./_\“ ° .‘
s e
X1)X2,... 7Xn o. X’n o
I.I.d. sampled ‘. L
according to . o o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any = € X,, and any
r > 0, we have p(B(z,r)) > min(ar’, 1).



Concentration inequality

—n . '
. . *—n
X1)X2,... 7Xn o. X’n o
I.I.d. sampled ‘. .
according to . ¢« o,

For a,b > 0, u satisfies the (a, b)-standard assumption if for any = € X,, and any
r > 0, we have p(B(z,r)) > min(ar’, 1).

Theorem: If 1 satisfies the (a, b)-standard assumption, then for any € > 0:

P (db (dgm(Filt(Xu)), dgm(Filt(Xn))) > 8) < min(f—; exp(—nae®), 1).

n— oo

N /
Moreover lim PP <db (dgm(Filt(Xu)),dgm(Filt(Xn))> <4 <1°g ”) ) _
n
where (' is a constant only depending on a and b.

Remark: — Confidence intervals only depending on a and b (see also [Balakrishnan
et al 2013] when X, is a smooth manifold).



Concentration inequality

—n . '
. . *—n
X1)X2,... 7Xn o. X’n o
I.l.d. sampled ‘. L
according to . o o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any = € X,, and any
r > 0, we have p(B(z,r)) > min(ar’, 1).

Sketch of proof:
1. Upperbound P (dH(XM,Xn) > %)

2. (a,b) standard assumption = an explicit upperbound for the covering number
of X,, (by balls of radius £/2).

3. Apply “union bound” argument.



Minimax rate of convergence

Let P(a,b, M) be the set of all the probability measures on the metric space (M, p)
satisfying the (a, b)-standard assumption on M:



Minimax rate of convergence

Let P(a,b, M) be the set of all the probability measures on the metric space (M, p)
satisfying the (a, b)-standard assumption on M:

Theorem:
Let (M, p) be a metric space and let a > 0 and b > 0. Then:

S [db(dgm(Fﬂt(Xu)),dgm(Filt(Xn)))} <C (m_”)l/b

neP(a,b,M) n

where the constant C' only depends on a and b (not on M!). Assume more-
over that there exists a non isolated point = in M and consider any sequence
() € M\ {z})" such that p(z,z,) < (an)”'/’. Then for any estimator dgm,
of dgm(Filt(X,)):

liminf p(z,z,)”"" sup E [db(dgm(Filt(Xu)), d/gl\*nn)} > '

nTree nEP (a,b,M) B

where C’ is an absolute constant.

Remark: we can obtain slightly better bounds if X,, is a submanifold of R” - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]



Lecam’'s Lemma

Lemma:
Let P be a set of proba distributions. For p € P, let 6(1) take values in a metric

space (X, px). Let o and p1 in P be any pair of distributions. Let Xi,..., X, be
drawn i.i.d. from some u € P. Let 8 = 0(X1,...,X,) be any estimator of 6(u),

then
~ 1 "
sup By px(0,0) > <px (0(po), 0(p1)) [1 = TV (po, p1)]™" .

pneP 8
where TV (uo, p1) = suppgeg [Ho(B) — pa(B)].



Lecam’'s Lemma

Lemma:
Let P be a set of proba distributions. For p € P, let 6(1) take values in a metric

space (X, px). Let o and p1 in P be any pair of distributions. Let Xi,..., X, be
drawn i.i.d. from some u € P. Let 8 = 0(X1,...,X,) be any estimator of 6(u),

then
1

sup E,.» px(0,0) > 5P (0(110), 0(p2)) [1 = TV (o, pa)]”"
I

where TV (110, p11) = supgeg [o(B) — pa1(B)]:

In our case: ° ° e ---© 0 000:--- 0

= (a b,M), (X, px) is the space of persistence diagrams with px = dp and

b1 = demEi(, )]
0 = 05 the Dirac mass at x and p1 = +04, + (1 — < )uo (they belong to P).

=

TV (po, p1) = 2, s0 [1 — TV (uo, p1)]*" — e * as n — oo.
dp (dgm(Filt(Xo)), dgm(Filt(X1))) = pm(z, zn)/2
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