Metrics on diagrams and persistent homology

Peter Bubenik

Department of Mathematics Cleveland State University p.bubenik@csuohio.edu http://academic.csuohio.edu/bubenik_p/

July 18, 2013 joint work with Vin de Silva and Jonathan A. Scott

funded by AFOSR FA9550-13-1-0115

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

From data to topology:

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

From data to topology:

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

From data to topology:

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

From data to topology:

- Start with a finite set of points in some metric space.
- Apply a geometric construction (e.g. Čech, Rips) to obtain a nested sequence of simplicial complexes.

Persistent homology

We have a nested sequence of simplicial complexes,

$$K_0 \longrightarrow K_1 \longrightarrow \cdots \longrightarrow K_n.$$
 (*)

Apply simplicial homology,

$$H(K_0) \longrightarrow H(K_1) \longrightarrow \cdots \longrightarrow H(K_n). \qquad (H*)$$

Persistent homology

We have a nested sequence of simplicial complexes,

$$K_0 \longrightarrow K_1 \longrightarrow \cdots \longrightarrow K_n.$$
 (*)

Apply simplicial homology,

$$H(K_0) \longrightarrow H(K_1) \longrightarrow \cdots \longrightarrow H(K_n). \qquad (H*)$$

The shape of these diagrams is given by the category \mathbf{n} ,

$$0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n.$$

Then (*) is equivalent to $\mathbf{n} \xrightarrow{K} \mathbf{Simp}$, and (*H**) is equivalent to $\mathbf{n} \xrightarrow{K} \mathbf{Simp} \xrightarrow{H} \mathbf{Vect}_{\mathbb{F}}$.

Persistent homology

Another paradigm:

2

- **1** Start with a function $f : X \to \mathbb{R}$.
 - For each $a \in \mathbb{R}$, consider $f^{-1}((-\infty, a])$.

• This gives us a diagram $F:(\mathbb{R},\leq) \to \mathbf{Top}.$

Ocomposing with singular homology we have,

$$(\mathbb{R}, \leq) \xrightarrow{F} \mathsf{Top} \xrightarrow{H} \mathsf{Vect}_{\mathbb{F}}.$$

Multidimensional persistent homology

- **Q** Start with a function $f : X \to \mathbb{R}^n$.
- For each $a \in \mathbb{R}^n$, consider $f^{-1}(\mathbb{R}^n_{\leq a})$.
 - This gives us a diagram $F : (\mathbb{R}^n, \leq) \to \mathbf{Top}$.
- Omposing with singular homology we have,

$$(\mathbb{R}^n,\leq)\xrightarrow{F}\mathsf{Top}\xrightarrow{H}\mathsf{Vect}_{\mathbb{F}}.$$

Levelset persistent homology

- **1** Start with a function $f : X \to \mathbb{R}$.
- For each interval $I \subseteq \mathbb{R}$, consider $f^{-1}(I)$.
 - This gives us a diagram F : **Intervals** \rightarrow **Top**.
- Omposing with singular homology we have,

Intervals
$$\xrightarrow{F}$$
 Top \xrightarrow{H} Vect_F.

- Start with a function $f: X \to S^1$.
- For each arc $A \subseteq S^1$, consider $f^{-1}(A)$.
 - This gives us a diagram $F : \mathbf{Arcs} \to \mathbf{Top}$.
- Omposing with singular homology we have,

Arcs
$$\xrightarrow{F}$$
 Top \xrightarrow{H} Vect_F.

Goals

We will use category theory to give a unified treatment of each of the above flavors of persistent homology.

Why?

- Give simpler, common proofs to some basic persistence results.
- Remove assumptions.
- Apply persistence to functions, $f : X \to (M, d)$.
- Allow homology to be replaced with other functors.
- Provide a framework for new applications.

Specific goal:

• Interpret and prove stability in this setting.

Terminology

In this talk a metric will be allowed to

- have $d(x, y) = \infty$ for $x \neq y$, and
- have d(x, y) = 0 for $x \neq y$.

That is, it is an extended pseudometric.

Example: The Hausdorff distance on the set of all subspaces of \mathbb{R} .

Unified framework

Generalized persistence module,

$$\mathbf{P} \xrightarrow{F} \mathbf{C} \xrightarrow{H} \mathbf{A}.$$

Here,

- The indexing category **P** is a poset together with some notion of distance;
- C is some category;
- A is some abelian category (e.g. Vect_𝔅, R-mod);
- F and H are arbitrary functors.

Main results

Theorem (Interleaving distance)

There is a distance function d(F, G) between diagrams $F, G : \mathbf{P} \rightarrow \mathbf{C}$. This 'interleaving distance' is a metric.

Theorem (Stability of interleaving distance)

Let $F, G : \mathbf{P} \to \mathbf{C}$ and $H : \mathbf{C} \to \mathbf{A}$. Then,

 $d(H \circ F, H \circ G) \leq d(F, G).$

Inverse images of metric space valued functions

Start with $f : X \to (M, d_M)$. Let **P** be a poset of subsets of (M, d_M) . Define

 $F: \mathbf{P} o \mathbf{Top}$ $U \mapsto f^{-1}(U)$

Background Categorical ph Relative ph More structure

Inverse images of metric space valued functions

Start with $f : X \to (M, d_M)$. Let **P** be a poset of subsets of (M, d_M) . Define

 $F: \mathbf{P} o \mathbf{Top} \ U \mapsto f^{-1}(U)$

Theorem (Inverse-image stability)

Let $F, G : \mathbf{P} \to \mathbf{Top}$ be given by inverse images of $f, g : X \to (M, d_M)$.

$$d(F,G) \leq d_{\infty}(f,g) := \sup_{x \in X} d_M(f(x),g(x)).$$

Corollary (Stability of generalized persistence modules)

Let H : **Top** \rightarrow **A**. Then

 $d(HF, HG) \leq d_{\infty}(f, g).$

Peter Bubenik

Metrics on diagrams and persistent homology

Examples

persistence	М	Р
ordinary	\mathbb{R}	$\{(-\infty, a] \mid a \in \mathbb{R}\}$
multidimensional	\mathbb{R}^{n}	$\{\mathbb{R}^n_{\leq a}\mid a\in\mathbb{R}^n\}$
levelset	\mathbb{R}	$\{ intervals in \ \mathbb{R} \}$
angle-valued	S^1	$\{ arcs in S^1 \}$
cosheaf	М	{open sets in <i>M</i> }

For each of these examples,

- P is a poset under inclusion;
- for $f: X \to M$, $F: \mathbf{P} \to \mathbf{Top}$ is given by inverse images of f;
- for $f,g: X \to M$ and $H: \mathbf{Top} \to \mathbf{A}, \ d(HF, HG) \leq d_{\infty}(f,g).$

Comparing diagrams

A natural transformation is a map of diagrams. For $V, W : \mathbf{n} \to \mathbf{Vect}_{\mathbb{F}}$ it is a commutative diagram,

For $F, G : \mathbf{P} \to \mathbf{D}$, for all $x \leq y$ there is a commuting diagram,

Comparing diagrams

We denote a natural transformation by $\varphi: F \Rightarrow G$.

Two diagrams *F*, *G* are isomorphic if we have $\varphi : F \Rightarrow G$ and $\psi : G \Rightarrow F$ such that $\psi \circ \varphi = \mathsf{Id}$ and $\varphi \circ \psi = \mathsf{Id}$.

What if F and G are not isomorphic?

Comparing diagrams

We denote a natural transformation by $\varphi: F \Rightarrow G$.

Two diagrams F, G are isomorphic if we have $\varphi : F \Rightarrow G$ and $\psi : G \Rightarrow F$ such that $\psi \circ \varphi = Id$ and $\varphi \circ \psi = Id$.

What if F and G are not isomorphic?

We would like to be able to quantify how far F and G are from being isomorphic.

- We will define translations on **P**, and use these
- to define interleavings between diagrams.
- Then a metric on **P** will give us the interleaving distance.

Translations

Definition

A translation is given by $\Gamma : \mathbf{P} \to \mathbf{P}$ such that $x \leq \Gamma(x)$ for all x.

- The identity is a translation.
- The composition of translations is a translation.

Interleaving

Definition

F and G are (Γ, K) -interleaved if there exist φ , ψ ,

$$\begin{array}{c} \mathbf{P} \xrightarrow{\Gamma} \mathbf{P} \xrightarrow{\mathcal{K}} \mathbf{P} \\ F \downarrow \stackrel{\varphi}{\Rightarrow} \downarrow_{G} \stackrel{\psi}{\Rightarrow} \downarrow_{F} \\ \mathbf{C} \underbrace{\longrightarrow} \mathbf{C} \underbrace{\longrightarrow} \mathbf{C} \end{array}$$

such that

$$\psi \varphi = FK\Gamma$$
 and $\varphi \psi = G\Gamma K$.

Interleaving of (\mathbb{R}, \leq) -indexed diagrams

 $\Gamma = K : a \mapsto a + \varepsilon$

 $\forall a \leq b,$

 $\forall a,$

Interleaving distance

Now assume that \mathbf{P} has a metric d.

An ε -translation is a translation $\Gamma : \mathbf{P} \to \mathbf{P}$ such that $d(x, \Gamma(x)) \leq \varepsilon$ for all x.

Definition

 $d(F,G) = \inf(\varepsilon \mid F, G \text{ interleaved by } \varepsilon \text{-translations})$

Theorem (Interleaving distance)

This interleaving distance is metric.

Examples

Given (M, d_M) , let **P** be a subset of $\mathcal{P}(M)$ with partial order given by inclusion, and Hausdorff distance.

persistence	М	Р
ordinary	R	$\{(-\infty, a] \mid a \in \mathbb{R}\}$
multidimensional	\mathbb{R}^{n}	$\{\mathbb{R}^n_{\leq a}\mid a\in\mathbb{R}^n\}$
levelset	\mathbb{R}	$\{\text{intervals in } \mathbb{R}\}$
angle-valued	S^1	$\{ arcs in S^1 \}$
cosheaf	М	{open sets in <i>M</i> }

- Particular ε -translations, Γ_{ε} , are given by thickening by ε .
- Note that each poset **P** is closed under these Γ_{ε} .

Using functoriality

Theorem (Stability of interleaving distance)

Let $F, G : \mathbf{P} \to \mathbf{C}$ and $H : \mathbf{C} \to \mathbf{A}$. Then,

$$d(H \circ F, H \circ G) \leq d(F, G).$$

Proof.

Inverse-image stability

Theorem (Inverse-image stability)

Let $F, G : \mathbf{P} \to \mathbf{Top}$ correspond to $f, g : X \to (M, d_M)$. Assume \mathbf{P} closed under Γ_{ε} for all ε .

$$d(F,G) \leq d_{\infty}(f,g) := \sup_{x \in X} d_M(f(x),g(x)).$$

Proof.

Let
$$\varepsilon = d_{\infty}(f,g)$$
. *F*, *G* are ε -interleaved:

$$\mathsf{F}(S) = f^{-1}(S) \subseteq g^{-1}(\mathsf{\Gamma}_{\varepsilon}(S)) = G\mathsf{\Gamma}_{\varepsilon}(S).$$

Thus, $d(F,G) \leq \varepsilon = d_{\infty}(f,g).$

Algebraic structure

Until this point we have only imposed structure on the indexing category: a partial order and a metric.

To compute we need some algebraic structure in our target category. For example, $Vect_{\mathbb{F}_2}$, $Vect_{\mathbb{F}}$, or Ab.

Algebraic structure

Until this point we have only imposed structure on the indexing category: a partial order and a metric.

To compute we need some algebraic structure in our target category. For example, $Vect_{\mathbb{F}_2}$, $Vect_{\mathbb{F}}$, or Ab.

We will assume the target category, **A**, is abelian.

This also includes **R**-mod and sheaves of abelian groups on X.

Definition

- A category, **A**, is abelian if
 - each hom-set is an abelian group;
 - all finite direct sums exist; and
 - all morphisms have kernels and cokernels.

Kernel, image and cokernel persistence

Given ,

- $X \subseteq Y \in$ **Top** and $g : Y \rightarrow (M, d_M)$;
- **P** is a poset of subsets of *M* closed under Γ_{ε} , and
- H : **Top** \rightarrow **A**.

Let $f: X \hookrightarrow Y \xrightarrow{g} (M, d_M)$. Let $F, G: \mathbf{P} \to \mathbf{Top}$ be given by inverse images of f, g.

Since $f^{-1}(U) \subset g^{-1}(U)$, $F \hookrightarrow G$, and $HF \xrightarrow{\alpha} HG \in \mathbf{A}^{\mathbf{P}}$.

Since **A** is abelian, so is $\mathbf{A}^{\mathbf{P}}$. So the kernel, image and cokernel of α exist.

Stability for kernel, image and cokernel persistence

Given $X \subseteq Y \in$ **Top** and $g, g' : Y \rightarrow (M, d_M)$.

Construct $\alpha: HF \to HG$ and $\alpha': HF' \to HG'$ as above.

Theorem (Stability of ker/im/coker persistence)

 $\begin{aligned} d(\ker(\alpha), \ker(\alpha')) &\leq d_{\infty}(g, g') \\ d(\operatorname{im}(\alpha), \operatorname{im}(\alpha')) &\leq d_{\infty}(g, g') \\ d(\operatorname{coker}(\alpha), \operatorname{coker}(\alpha')) &\leq d_{\infty}(g, g') \end{aligned}$

Stability for kernel, image and cokernel persistence

Given $X \subseteq Y \in$ **Top** and $g, g' : Y \rightarrow (M, d_M)$.

Construct $\alpha: HF \to HG$ and $\alpha': HF' \to HG'$ as above.

Theorem (Stability of ker/im/coker persistence)

 $\begin{aligned} d(\ker(\alpha), \ker(\alpha')) &\leq d_{\infty}(g, g') \\ d(\operatorname{im}(\alpha), \operatorname{im}(\alpha')) &\leq d_{\infty}(g, g') \\ d(\operatorname{coker}(\alpha), \operatorname{coker}(\alpha')) &\leq d_{\infty}(g, g') \end{aligned}$

Monoid of translations

Recall def of translation: $\Gamma : \mathbf{P} \to \mathbf{P}$ such that $x \leq \Gamma(x)$ for all x.

That is, Γ is an endofunctor of **P** together with Id $\Rightarrow \Gamma$.

Monoid of translations

Recall def of translation: $\Gamma : \mathbf{P} \to \mathbf{P}$ such that $x \leq \Gamma(x)$ for all x.

That is, Γ is an endofunctor of **P** together with Id $\Rightarrow \Gamma$.

 $\mathsf{End}_*(\mathsf{P})$ contain Id and are closed under composition. So they are a monoid.

$$\operatorname{End}_{*}(\mathsf{P}) \xrightarrow{\rho}_{\iota} (([0,\infty),\geq),+,0)$$

 $\rho: \Gamma \mapsto \sup(d(x, \Gamma(x)))$ $\iota: \varepsilon \mapsto \Gamma_{\varepsilon}$

Either of ρ or ι allows us to define interleaving distance.

Lawvere metric spaces

Instead starting with a poset P and a metric,

it suffices to have set with a function $d: \mathbf{P} \times \mathbf{P} \rightarrow [0, \infty]$ such that

- d(a,a) = 0 for all $a \in \mathbf{P}$, and
- *d* satisfies the triangle inequality.

That is, **P** is an Lawvere metric space. We define $a \le b \in \mathbf{P}$ iff $d(a, b) < \infty$.

Lawvere metric spaces

Instead starting with a poset P and a metric,

it suffices to have set with a function $d: \mathbf{P} imes \mathbf{P} o [0,\infty]$ such that

- d(a,a) = 0 for all $a \in \mathbf{P}$, and
- *d* satisfies the triangle inequality.

That is, **P** is an Lawvere metric space. We define $a \le b \in \mathbf{P}$ iff $d(a, b) < \infty$.

A Lawvere metric space **P** is a small category enriched over the monoidal poset $(([0,\infty],\geq),+,0)$.

A preordered set is a small category enriched over the Boolean algebra {True, False}.

Our functor $\textbf{Lawv} \rightarrow \textbf{Proset}$ induced by the monoidal map $[0,\infty] \rightarrow \{\text{True},\text{False}\}$ that maps ∞ to False and all else to True.

Main theorem

Our main results (Interleaving distance and stability of interleaving distance) can be summarized as follows.

Theorem

Given a poset ${\bf P}$ with a metric, the interleaving distance gives a functor

 $Cat(P, -) : Cat \rightarrow Metric.$