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Background Categorical ph Relative ph More structure TDA R Rn levelset S1

Topological data analysis

From data to topology:
1 Start with a finite set of points in some metric space.
2 Apply a geometric construction (e.g. Čech, Rips) to obtain a

nested sequence of simplicial complexes.
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nested sequence of simplicial complexes.

Peter Bubenik Metrics on diagrams and persistent homology



Background Categorical ph Relative ph More structure TDA R Rn levelset S1

Topological data analysis

From data to topology:
1 Start with a finite set of points in some metric space.
2 Apply a geometric construction (e.g. Čech, Rips) to obtain a
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Persistent homology

We have a nested sequence of simplicial complexes,

K0 K1 · · · Kn.// // // (∗)

Apply simplicial homology,

H(K0) H(K1) · · · H(Kn).// // // (H∗)

The shape of these diagrams is given by the category n,

0 1 · · · n.// // //

Then (∗) is equivalent to n
K−→ Simp,

and (H∗) is equivalent to n
K−→ Simp

H−→ VectF.
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Persistent homology

Another paradigm:

1 Start with a function f : X → R.
2 For each a ∈ R, consider f −1((−∞, a]).

This gives us a diagram F : (R,≤)→ Top.

3 Composing with singular homology we have,

(R,≤)
F−→ Top

H−→ VectF.
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Multidimensional persistent homology

1 Start with a function f : X → Rn.

2 For each a ∈ Rn, consider f −1(Rn
≤a).

This gives us a diagram F : (Rn,≤)→ Top.

3 Composing with singular homology we have,

(Rn,≤)
F−→ Top

H−→ VectF.
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Levelset persistent homology

1 Start with a function f : X → R.

2 For each interval I ⊆ R, consider f −1(I ).

This gives us a diagram F : Intervals→ Top.

3 Composing with singular homology we have,

Intervals
F−→ Top

H−→ VectF.

Peter Bubenik Metrics on diagrams and persistent homology



Background Categorical ph Relative ph More structure TDA R Rn levelset S1

Angle-valued persistent homology

1 Start with a function f : X → S1.

2 For each arc A ⊆ S1, consider f −1(A).

This gives us a diagram F : Arcs→ Top.

3 Composing with singular homology we have,

Arcs
F−→ Top

H−→ VectF.
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Goals

We will use category theory to give a unified treatment of each of
the above flavors of persistent homology.

Why?

Give simpler, common proofs to some basic persistence results.

Remove assumptions.

Apply persistence to functions, f : X → (M, d).

Allow homology to be replaced with other functors.

Provide a framework for new applications.

Specific goal:

Interpret and prove stability in this setting.

Peter Bubenik Metrics on diagrams and persistent homology
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Terminology

In this talk a metric will be allowed to

have d(x , y) =∞ for x 6= y , and

have d(x , y) = 0 for x 6= y .

That is, it is an extended pseudometric.

Example: The Hausdorff distance on the set of all subspaces of R.

Peter Bubenik Metrics on diagrams and persistent homology
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Unified framework

Generalized persistence module,

P
F−→ C

H−→ A.

Here,

The indexing category P is a poset together with some notion
of distance;

C is some category;

A is some abelian category (e.g. VectF, R-mod);

F and H are arbitrary functors.

Peter Bubenik Metrics on diagrams and persistent homology
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Main results

Theorem (Interleaving distance)

There is a distance function d(F ,G ) between diagrams
F ,G : P→ C.
This ‘interleaving distance’ is a metric.

Theorem (Stability of interleaving distance)

Let F ,G : P→ C and H : C→ A. Then,

d(H ◦ F ,H ◦ G ) ≤ d(F ,G ).

Peter Bubenik Metrics on diagrams and persistent homology



Background Categorical ph Relative ph More structure Results Interleaving Payoff

Inverse images of metric space valued functions

Start with f : X → (M, dM).
Let P be a poset of subsets of (M, dM).
Define

F : P→ Top

U 7→ f −1(U)

Theorem (Inverse-image stability)

Let F ,G : P→ Top be given by inverse images of
f , g : X → (M, dM).

d(F ,G ) ≤ d∞(f , g) := sup
x∈X

dM(f (x), g(x)).

Corollary (Stability of generalized persistence modules)

Let H : Top→ A. Then

d(HF ,HG ) ≤ d∞(f , g).

Peter Bubenik Metrics on diagrams and persistent homology
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Examples

persistence M P

ordinary R {(−∞, a] | a ∈ R}

multidimensional Rn {Rn
≤a | a ∈ Rn}

levelset R {intervals in R}

angle-valued S1 {arcs in S1}

cosheaf M {open sets in M}

For each of these examples,

P is a poset under inclusion;

for f : X → M, F : P→ Top is given by inverse images of f ;

for f , g : X → M and H : Top→ A, d(HF ,HG ) ≤ d∞(f , g).

Peter Bubenik Metrics on diagrams and persistent homology
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Comparing diagrams

A natural transformation is a map of diagrams.
For V ,W : n→ VectF it is a commutative diagram,

V0 V1
. . . Vn

W0 W1
. . . Wn

//

��

ϕ0

//

��

ϕ1

//

��

ϕn

// // //

For F ,G : P→ D, for all x ≤ y there is a commuting diagram,

F (x) F (y)

G (x) G (y)

//F (x≤y)

��

ϕx

��

ϕy

//G(x≤y)

Peter Bubenik Metrics on diagrams and persistent homology
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Comparing diagrams

We denote a natural transformation by ϕ : F ⇒ G .

Two diagrams F , G are isomorphic if we have ϕ : F ⇒ G and
ψ : G ⇒ F such that ψ ◦ ϕ = Id and ϕ ◦ ψ = Id.

What if F and G are not isomorphic?

We would like to be able to quantify how far F and G are from
being isomorphic.

We will define translations on P, and use these

to define interleavings between diagrams.

Then a metric on P will give us the interleaving distance.

Peter Bubenik Metrics on diagrams and persistent homology
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Translations

Definition

A translation is given by Γ : P→ P such that x ≤ Γ(x) for all x .

The identity is a translation.

The composition of translations is a translation.

Peter Bubenik Metrics on diagrams and persistent homology
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Interleaving

Definition

F and G are (Γ,K )-interleaved if there exist ϕ, ψ,

P
Γ //

F
��

ϕ⇒

P

G
��

K //

ψ⇒

P

F
��

C C C

such that
ψϕ = FKΓ and ϕψ = GΓK .

Peter Bubenik Metrics on diagrams and persistent homology
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Interleaving of (R,≤)-indexed diagrams

Γ = K : a 7→ a + ε

∀a ≤ b,

F (a) //

$$

F (b)

$$
G (a + ε) // G (b + ε)

F (a + ε) // F (b + ε)

G (a)

::

// G (b)

::

∀a,

F (a) //

%%

F (a + 2ε)

G (a + ε)

77
F (a + ε)

''
G (a) //

99

G (a + 2ε)

Peter Bubenik Metrics on diagrams and persistent homology
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Interleaving distance

Now assume that P has a metric d .

An ε-translation is a translation Γ : P→ P such that
d(x , Γ(x)) ≤ ε for all x .

Definition

d(F ,G ) = inf(ε | F ,G interleaved by ε-translations)

Theorem (Interleaving distance)

This interleaving distance is metric.

Peter Bubenik Metrics on diagrams and persistent homology
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Examples

Given (M, dM), let P be a subset of P(M) with partial order given
by inclusion, and Hausdorff distance.

persistence M P

ordinary R {(−∞, a] | a ∈ R}

multidimensional Rn {Rn
≤a | a ∈ Rn}

levelset R {intervals in R}

angle-valued S1 {arcs in S1}

cosheaf M {open sets in M}

Particular ε-translations, Γε, are given by thickening by ε.

Note that each poset P is closed under these Γε.

Peter Bubenik Metrics on diagrams and persistent homology
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Using functoriality

Theorem (Stability of interleaving distance)

Let F ,G : P→ C and H : C→ A. Then,

d(H ◦ F ,H ◦ G ) ≤ d(F ,G ).

Proof.

P
Γ //

F
��

ϕ⇒

P

G
��

K //

ψ⇒

P

F
��

C

H
��

=

C

H
��

=

C

H
��

A A A

Peter Bubenik Metrics on diagrams and persistent homology
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Inverse-image stability

Theorem (Inverse-image stability)

Let F ,G : P→ Top correspond to f , g : X → (M, dM).
Assume P closed under Γε for all ε.

d(F ,G ) ≤ d∞(f , g) := sup
x∈X

dM(f (x), g(x)).

Proof.

Let ε = d∞(f , g). F ,G are ε-interleaved:

F (S) = f −1(S) ⊆ g−1(Γε(S)) = GΓε(S).

Thus, d(F ,G ) ≤ ε = d∞(f , g).

Peter Bubenik Metrics on diagrams and persistent homology
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Algebraic structure

Until this point we have only imposed structure on the indexing
category: a partial order and a metric.

To compute we need some algebraic structure in our target
category. For example, VectF2

, VectF, or Ab.

We will assume the target category, A, is abelian.

This also includes R-mod and sheaves of abelian groups on X .

Definition

A category, A, is abelian if

each hom-set is an abelian group;

all finite direct sums exist; and

all morphisms have kernels and cokernels.

Peter Bubenik Metrics on diagrams and persistent homology
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Kernel, image and cokernel persistence

Given ,

X ⊆ Y ∈ Top and g : Y → (M, dM);

P is a poset of subsets of M closed under Γε, and

H : Top→ A.

Let f : X ↪→ Y
g−→ (M, dM).

Let F ,G : P→ Top be given by inverse images of f , g .

Since f −1(U) ⊂ g−1(U), F ↪→ G , and HF
α−→ HG ∈ AP.

Since A is abelian, so is AP.
So the kernel, image and cokernel of α exist.
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Stability for kernel, image and cokernel persistence

Given X ⊆ Y ∈ Top and g , g ′ : Y → (M, dM).

Construct α : HF → HG and α′ : HF ′ → HG ′ as above.

Theorem (Stability of ker/im/coker persistence)

d(ker(α), ker(α′)) ≤ d∞(g , g ′)

d(im(α), im(α′)) ≤ d∞(g , g ′)

d(coker(α), coker(α′)) ≤ d∞(g , g ′)

Peter Bubenik Metrics on diagrams and persistent homology
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Monoid of translations

Recall def of translation: Γ : P→ P such that x ≤ Γ(x) for all x .

That is, Γ is an endofunctor of P together with Id⇒ Γ.

End∗(P) contain Id and are closed under composition.
So they are a monoid.

End∗(P)
ρ // (([0,∞),≥),+, 0)
ι

oo

ρ : Γ 7→ sup(d(x , Γ(x)))
ι : ε 7→ Γε

Either of ρ or ι allows us to define interleaving distance.

Peter Bubenik Metrics on diagrams and persistent homology
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Lawvere metric spaces

Instead starting with a poset P and a metric,
it suffices to have set with a function d : P×P→ [0,∞] such that

d(a, a) = 0 for all a ∈ P, and

d satisfies the triangle inequality.

That is, P is an Lawvere metric space.
We define a ≤ b ∈ P iff d(a, b) <∞.

A Lawvere metric space P is a small category enriched over the
monoidal poset (([0,∞],≥),+, 0).

A preordered set is a small category enriched over the Boolean
algebra {True,False}.

Our functor Lawv→ Proset induced by the monoidal map
[0,∞]→ {True,False} that maps ∞ to False and all else to True.

Peter Bubenik Metrics on diagrams and persistent homology
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Main theorem

Our main results (Interleaving distance and stability of interleaving
distance) can be summarized as follows.

Theorem

Given a poset P with a metric, the interleaving distance gives a
functor

Cat(P,−) : Cat→Metric.

Peter Bubenik Metrics on diagrams and persistent homology
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