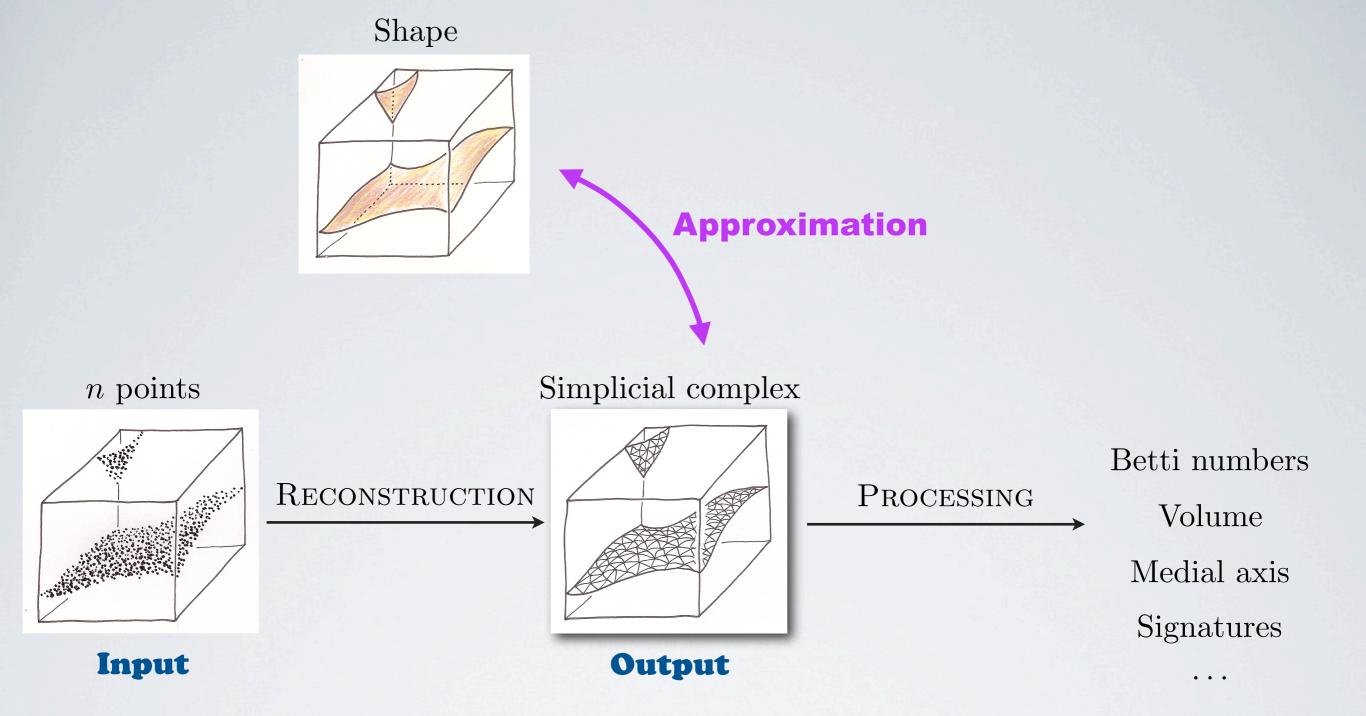
Geometry driven collapses for simplifying Čech complexes

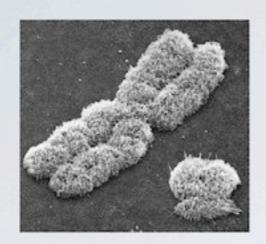
Dominique Attali (*) and André Lieutier (**)

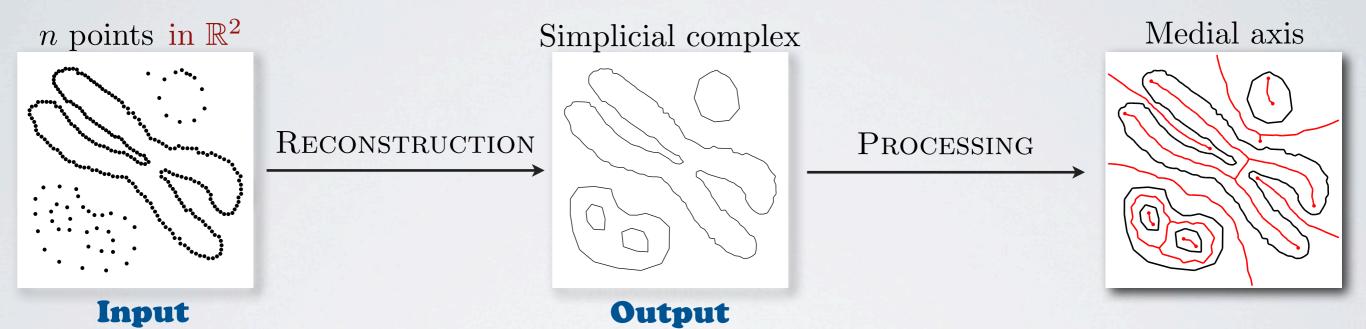
(*) Gipsa-lab

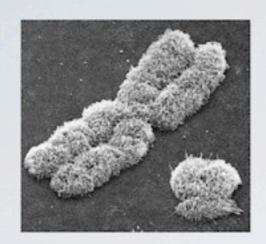
(**) Dassault Systèmes

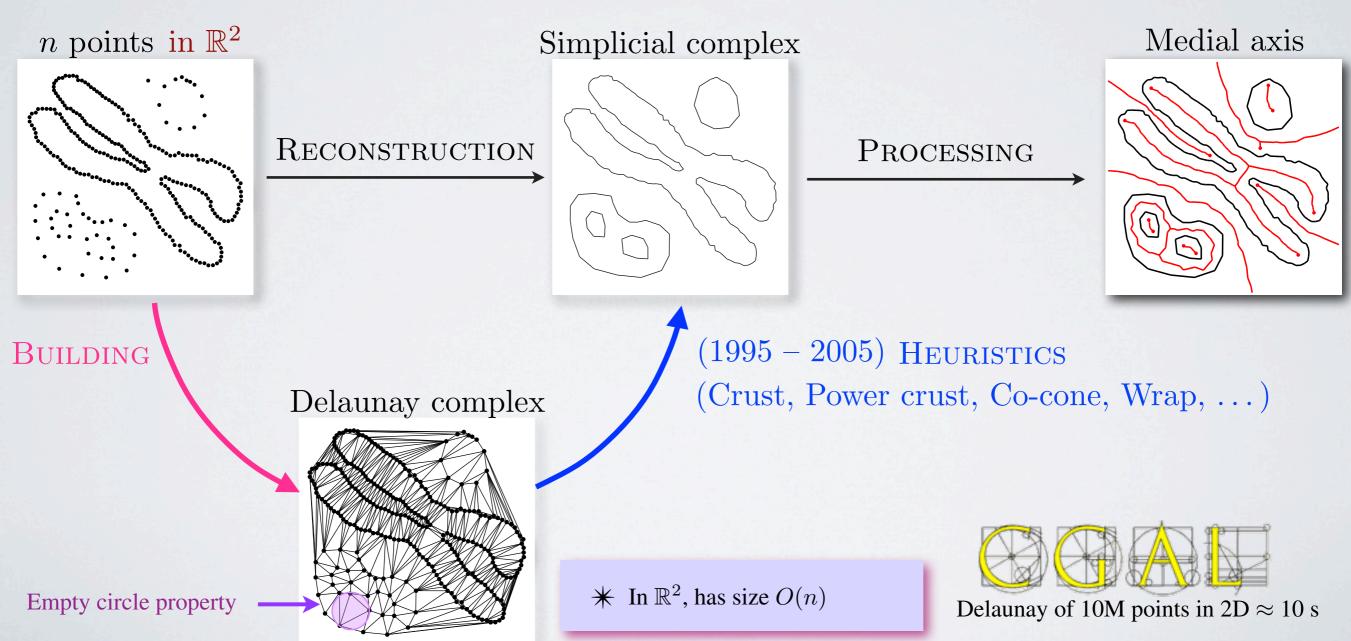
Workshop on Applied and Computational Algebraic Topology July 15-19, 2013 - Bremen, Germany

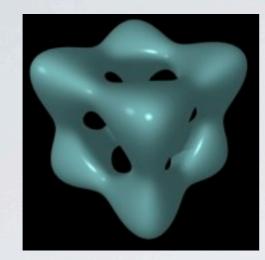








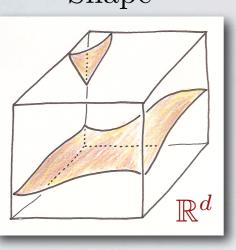


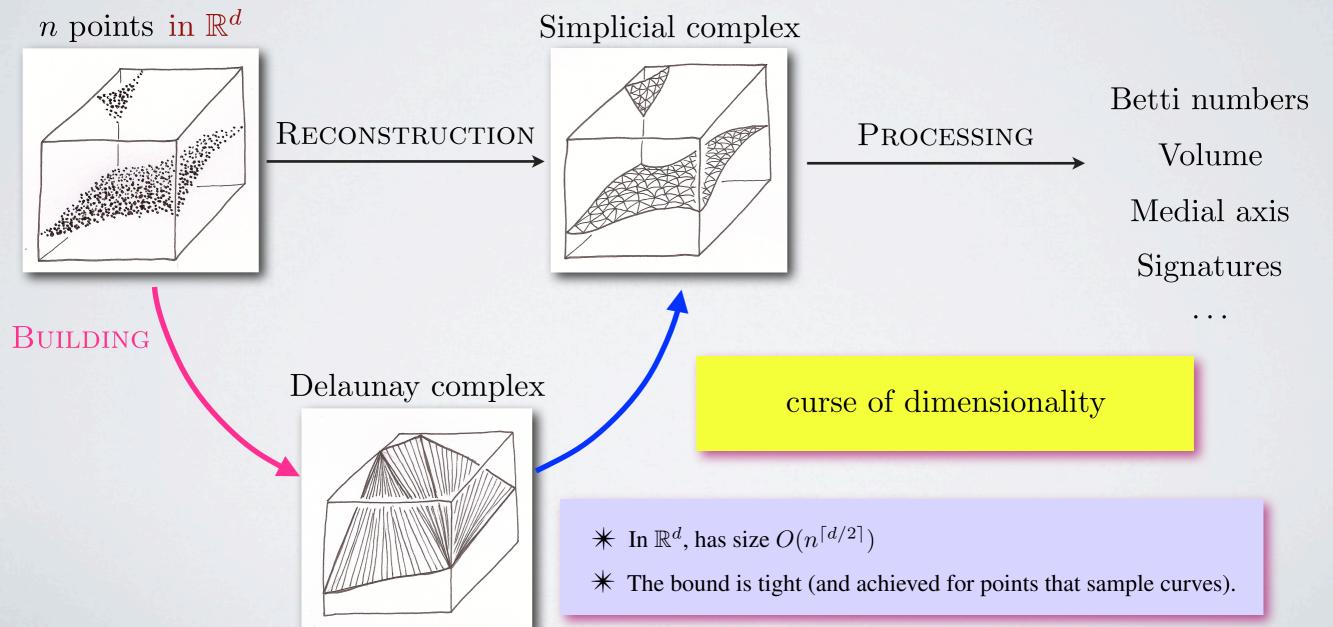


in 3D

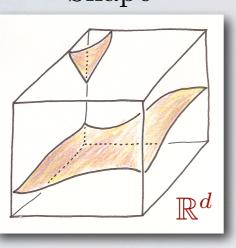


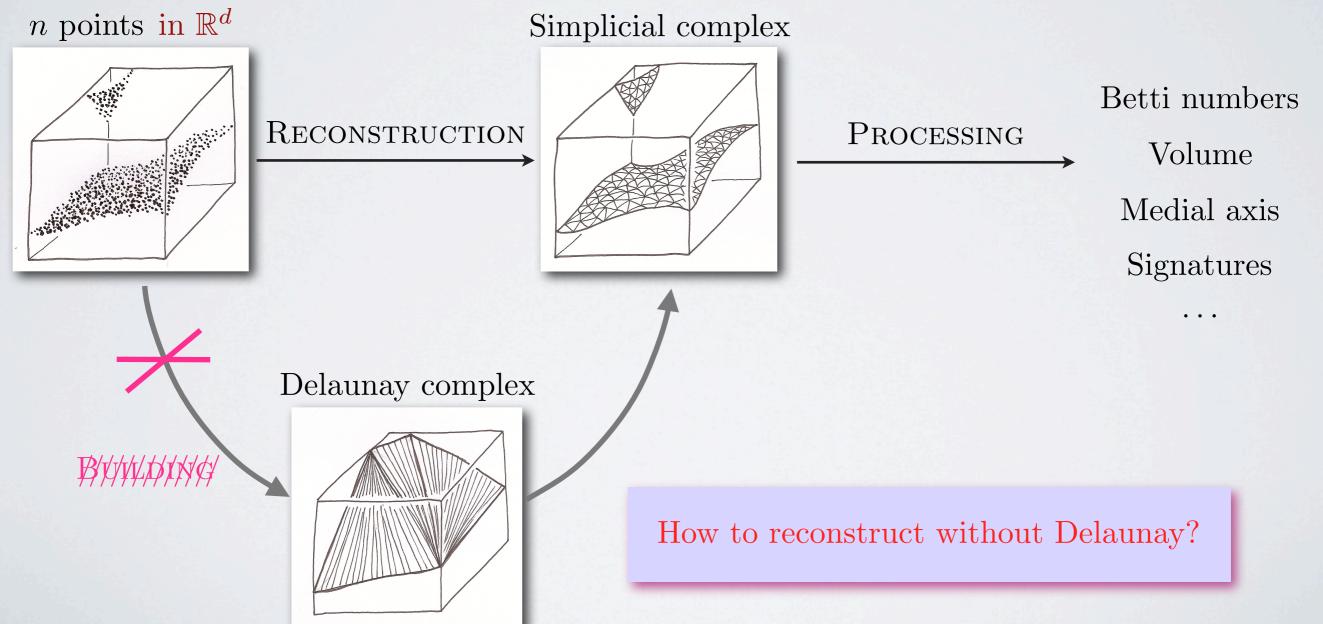
Shape

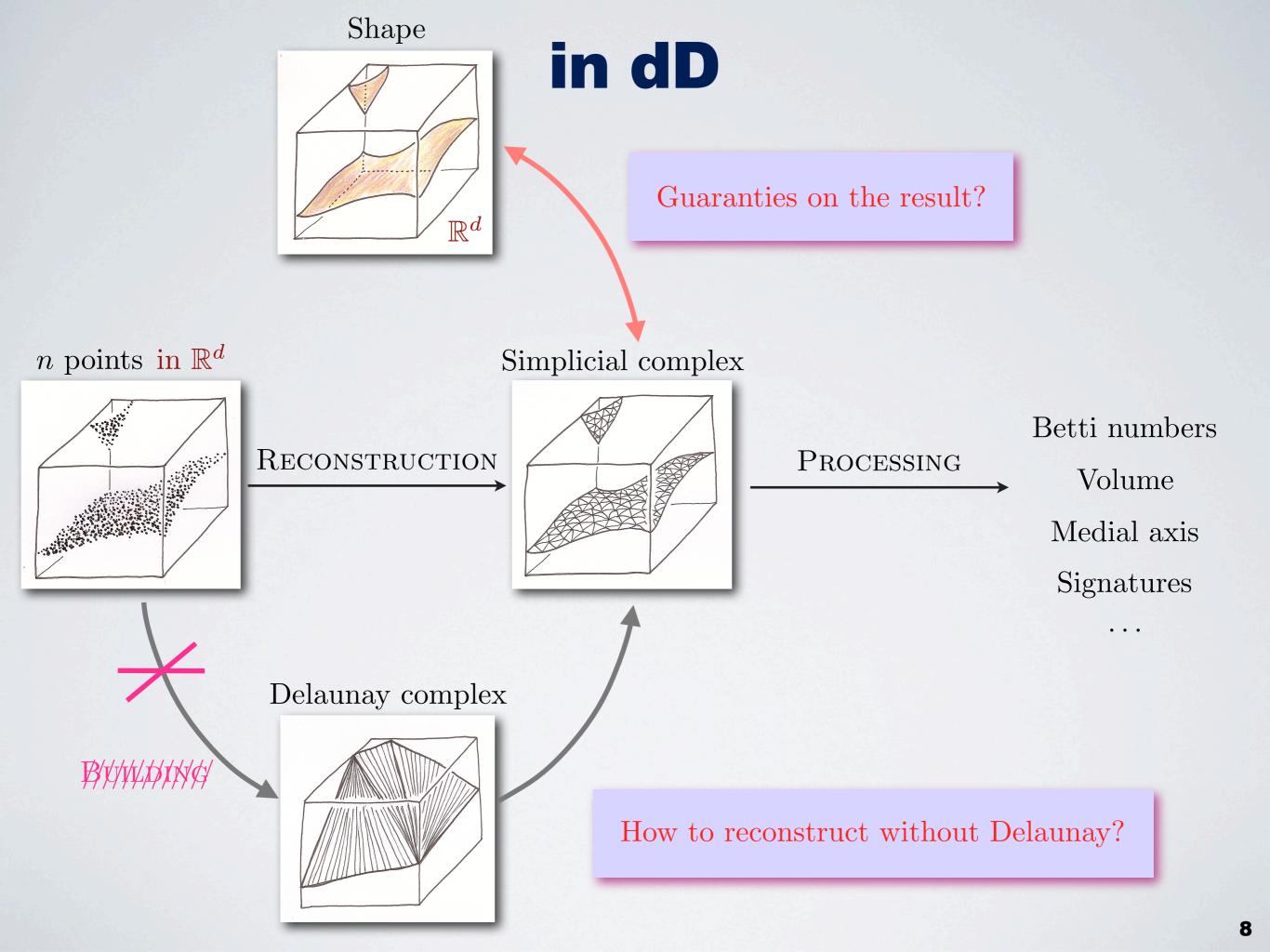




Shape



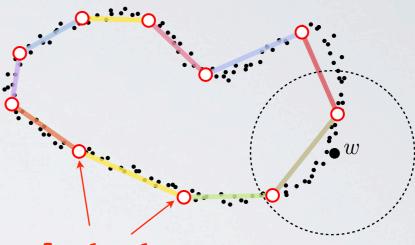




How to reconstruct without building the whole Delaunay complex?

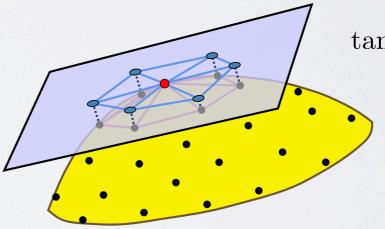
*

weak Delaunay triangulation [V. de Silva 2008]



Landmarks

tangential Delaunay complexes [J. D. Boissonnat & A. Ghosh 2010]

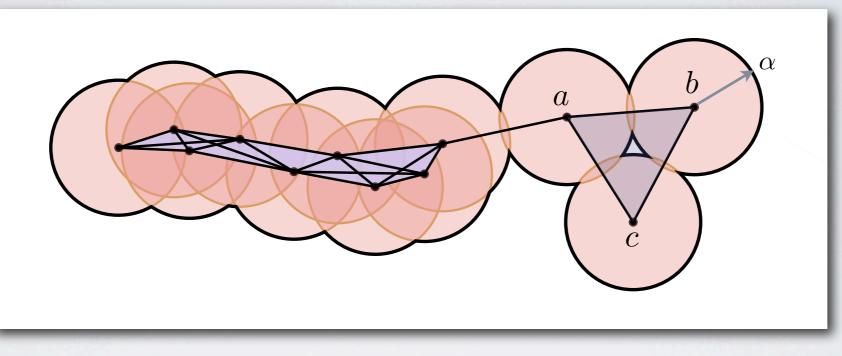


tangent plane

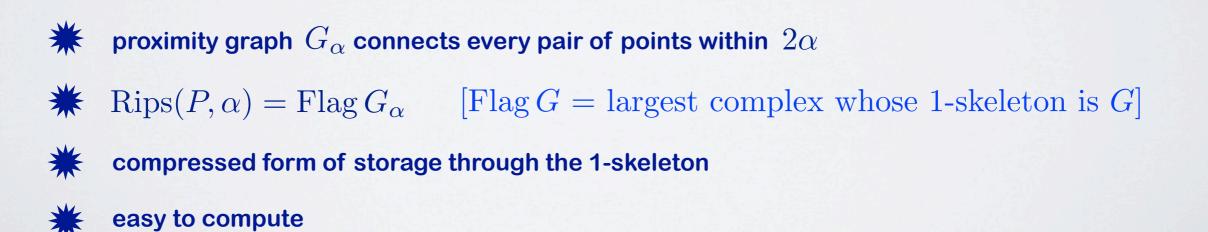
Rips complexes

our approach with André Lieutier and David Salinas

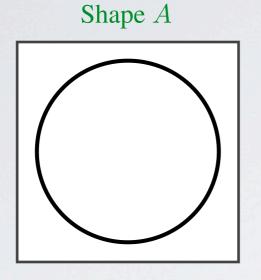
Rips complexes

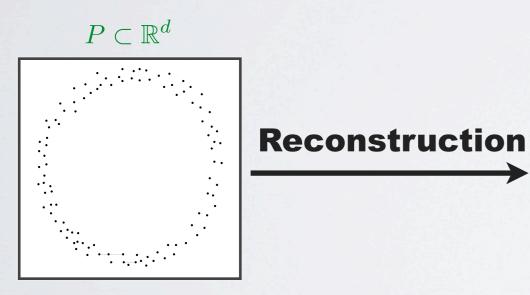


 $\operatorname{Rips}(P,\alpha) = \{ \sigma \subset P \mid \operatorname{Diameter}(\sigma) \le 2\alpha \}$

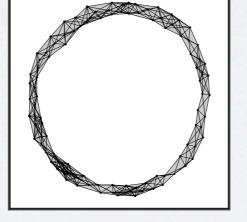


SHAPE RECONSTRUCTION



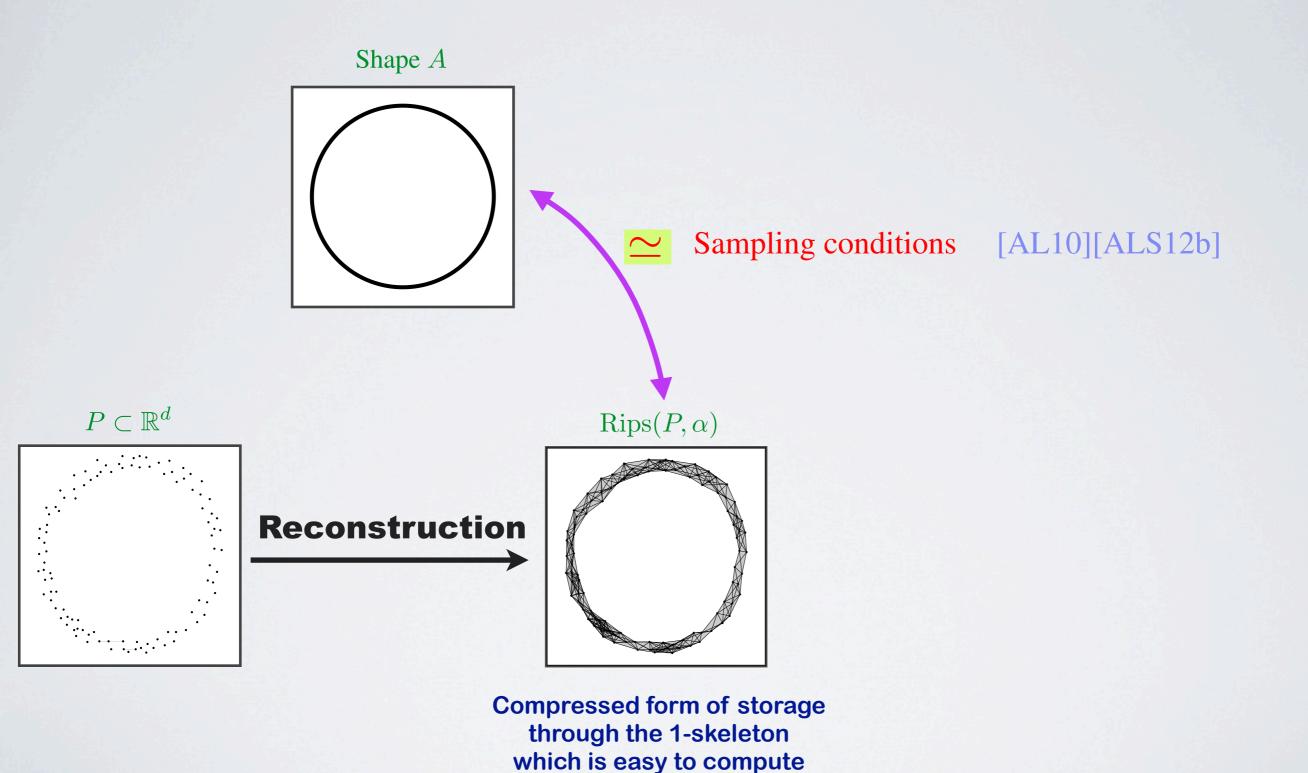


 $\operatorname{Rips}(P, \alpha)$

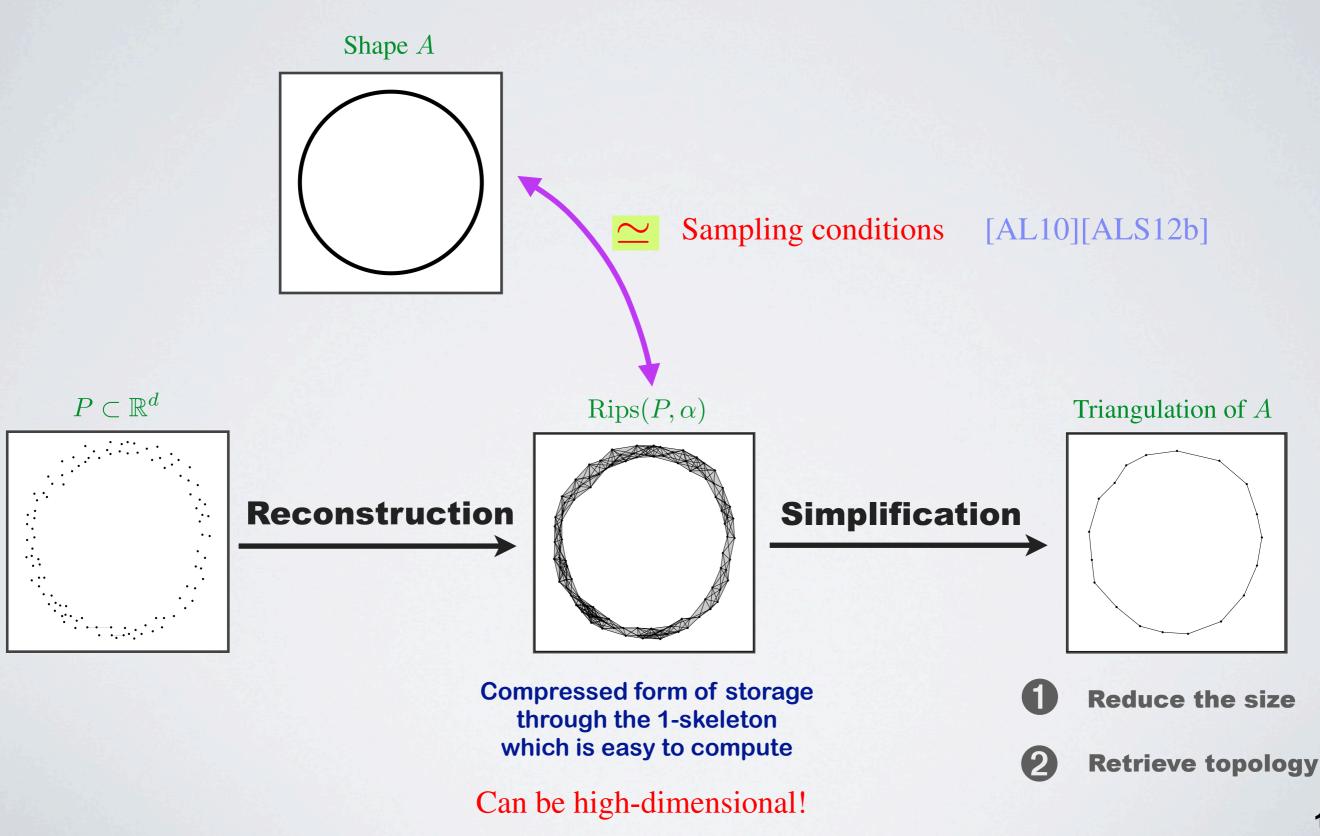


Compressed form of storage through the 1-skeleton which is easy to compute

SHAPE RECONSTRUCTION

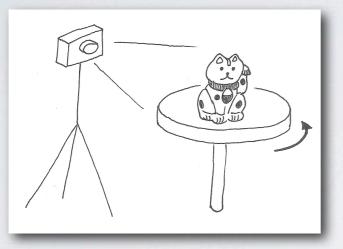


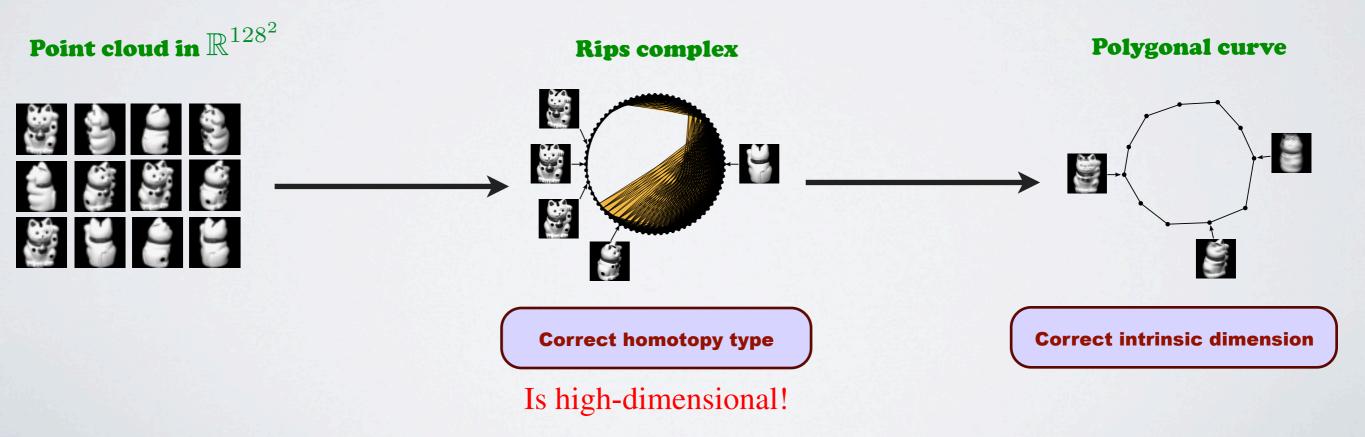
SHAPE RECONSTRUCTION



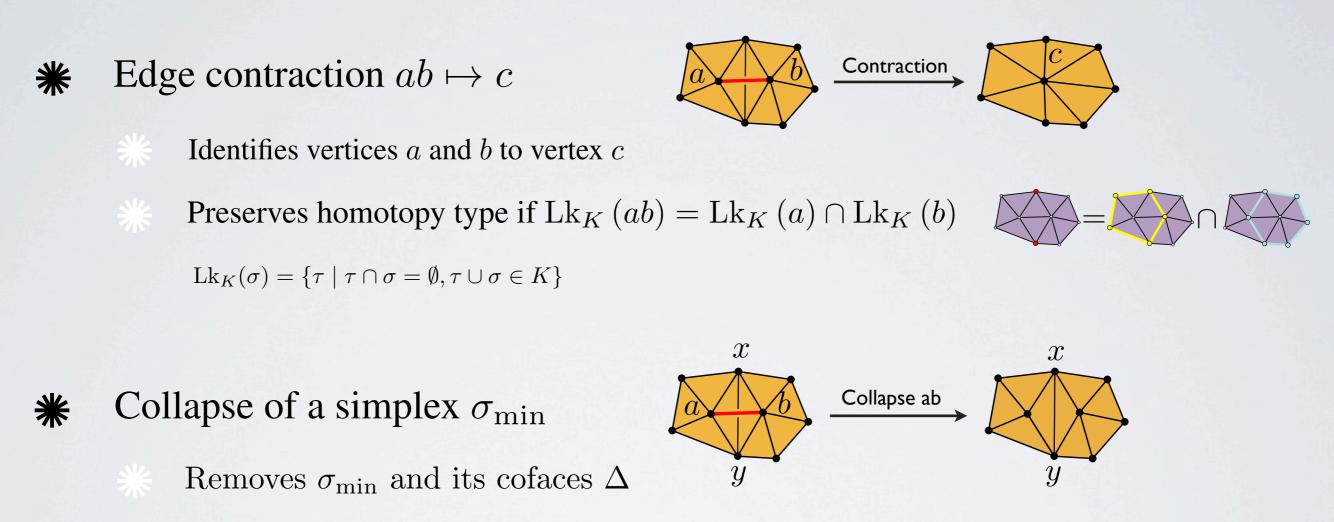
Example

Physical system

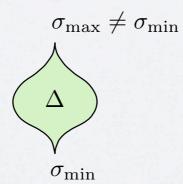




Simplification by iteratively applying elementary operations

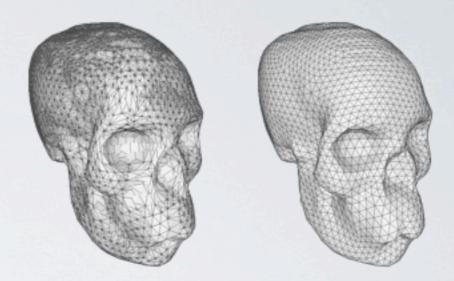


Preserves homotopy type if Δ has a unique maximal element $\sigma_{\max} \neq \sigma_{\min}$



Does a simplification exist?

- Different strategies:
 - Edge contractions;
 - Vertex and edge collapses;
 - Seems to work well in practice ...



- * And yet, not at all obvious that the Rips complex whose vertices sample a shape contains a subcomplex homeomorphic to that shape.
 - A triangulated Bing's house is contractible but not collapsible

K Geometry has to play a key role.

Simplifying Rips complexes

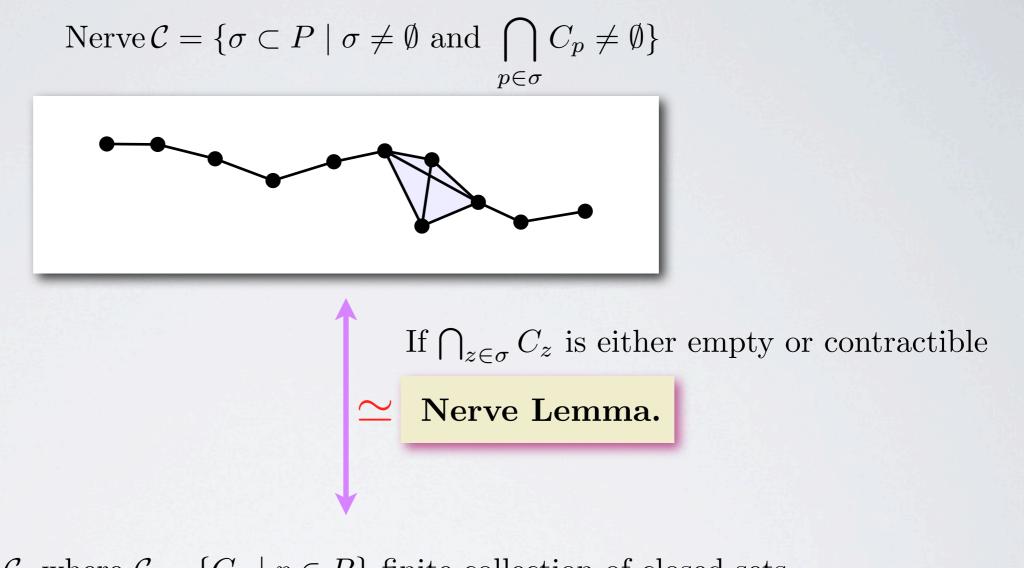
 $A \subset \mathbb{R}^d$ is a compact set $P \subset \mathbb{R}^d$ is a finite point set $\alpha > 0$

$\operatorname{Rips}(P, \alpha)$	sequence of collapses	α -nice triangulation
$\operatorname{rups}(\mathbf{r},\alpha)$	Conditions	of shape A

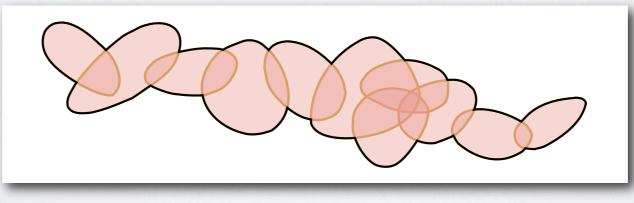
***** Unfortunately:

- the proof is not constructive (no algorithm!);
- * it only works for shapes that have an α -nice triangulation!

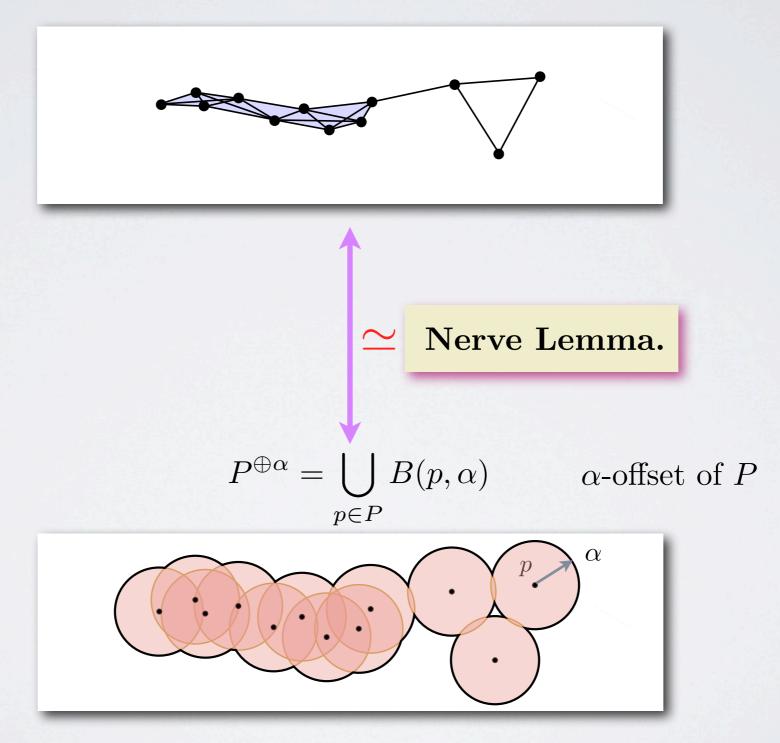
A key tool



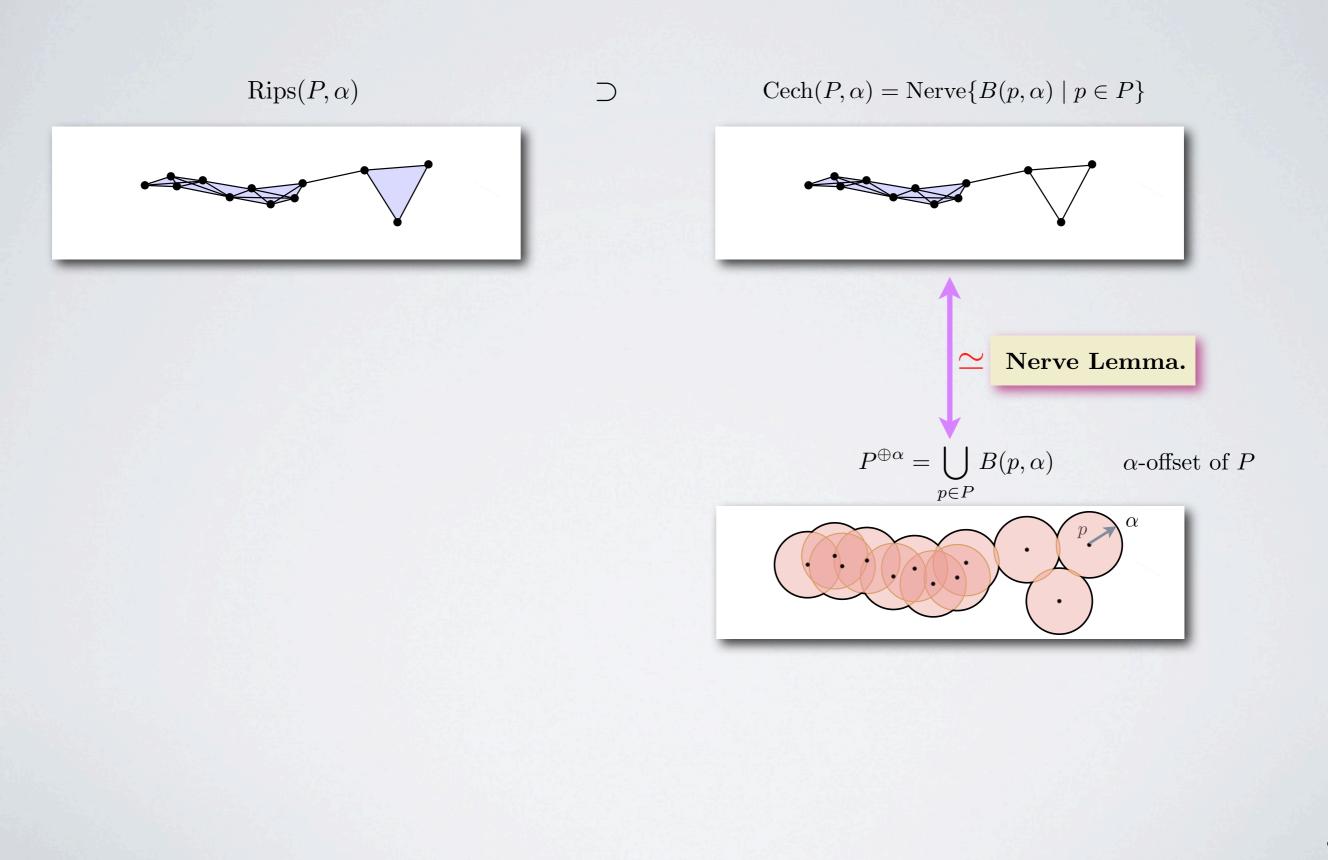
 $\bigcup \mathcal{C}$, where $\mathcal{C} = \{C_p \mid p \in P\}$ finite collection of closed sets

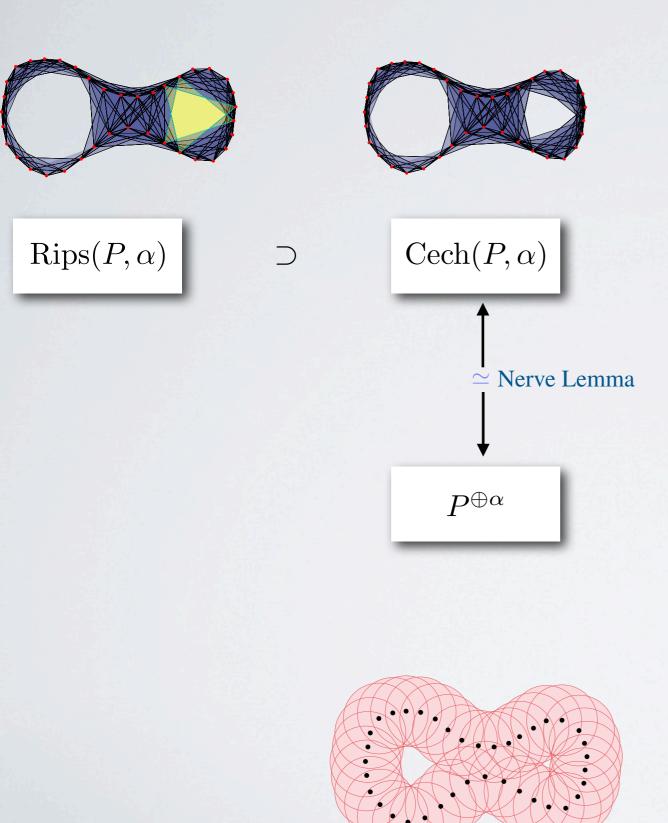


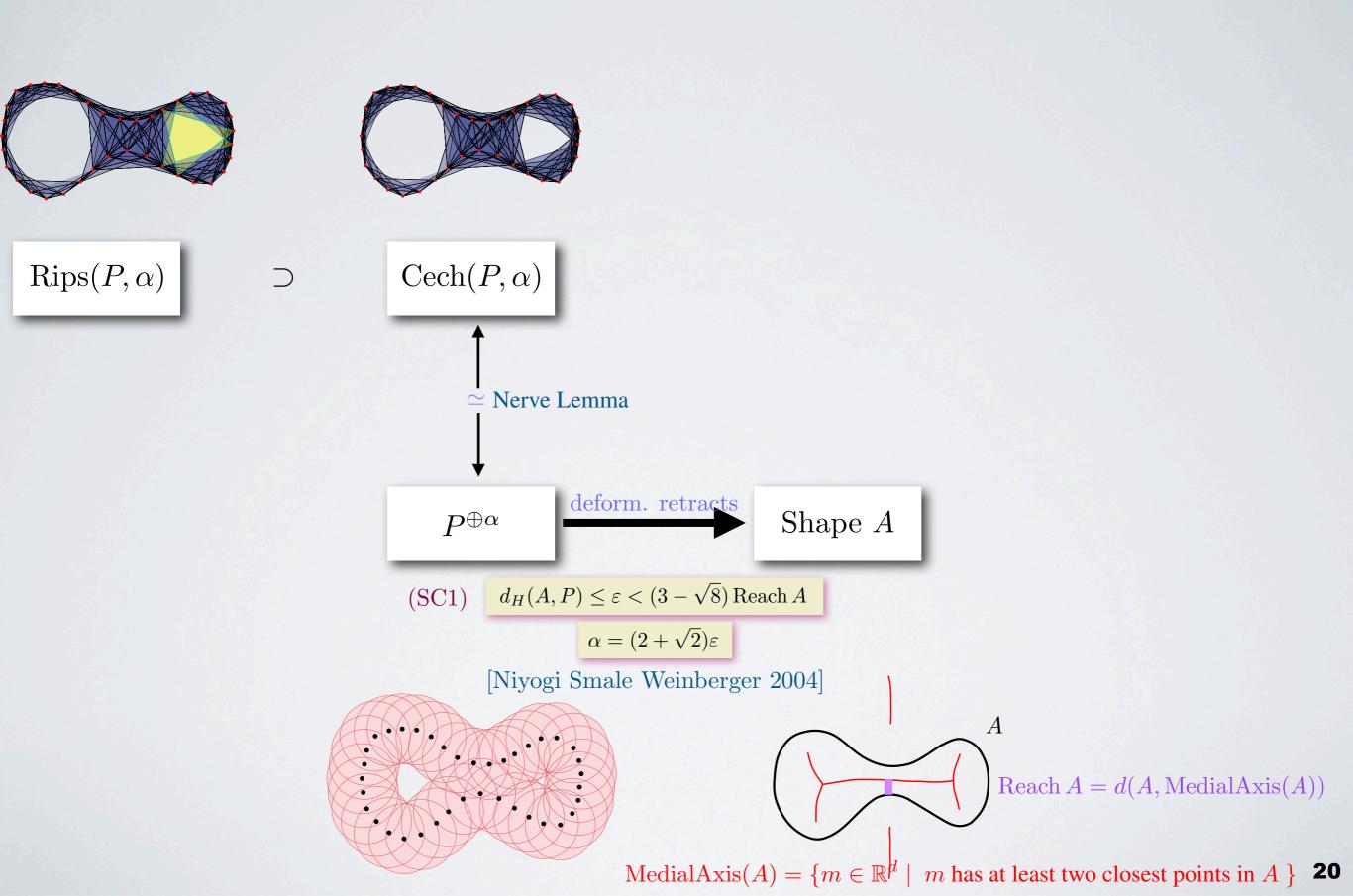
Čech complexes

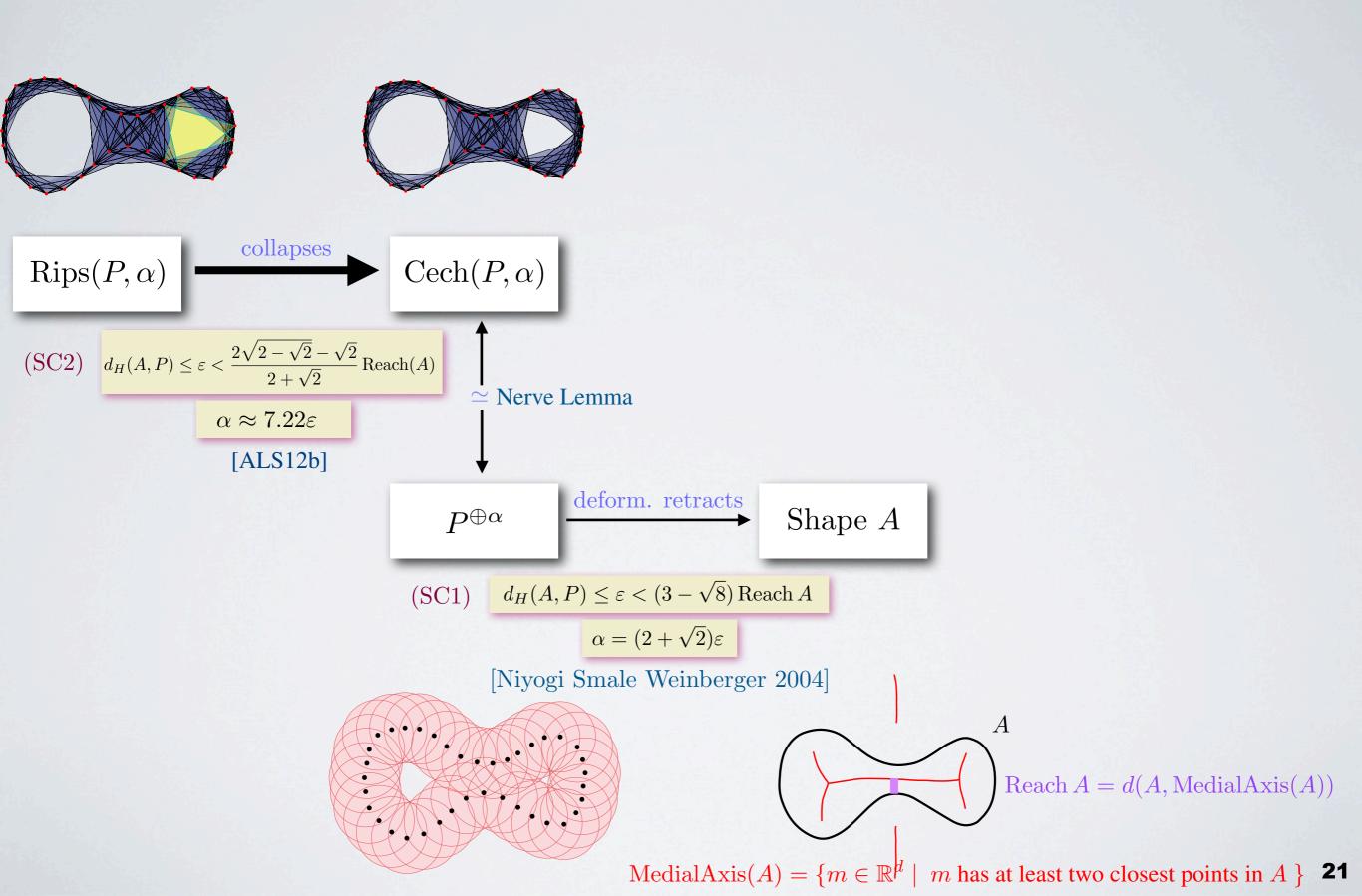


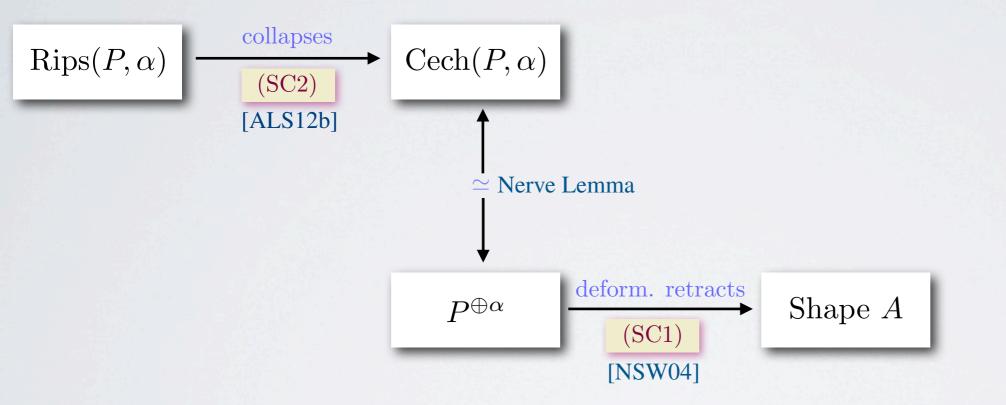
Čech complexes

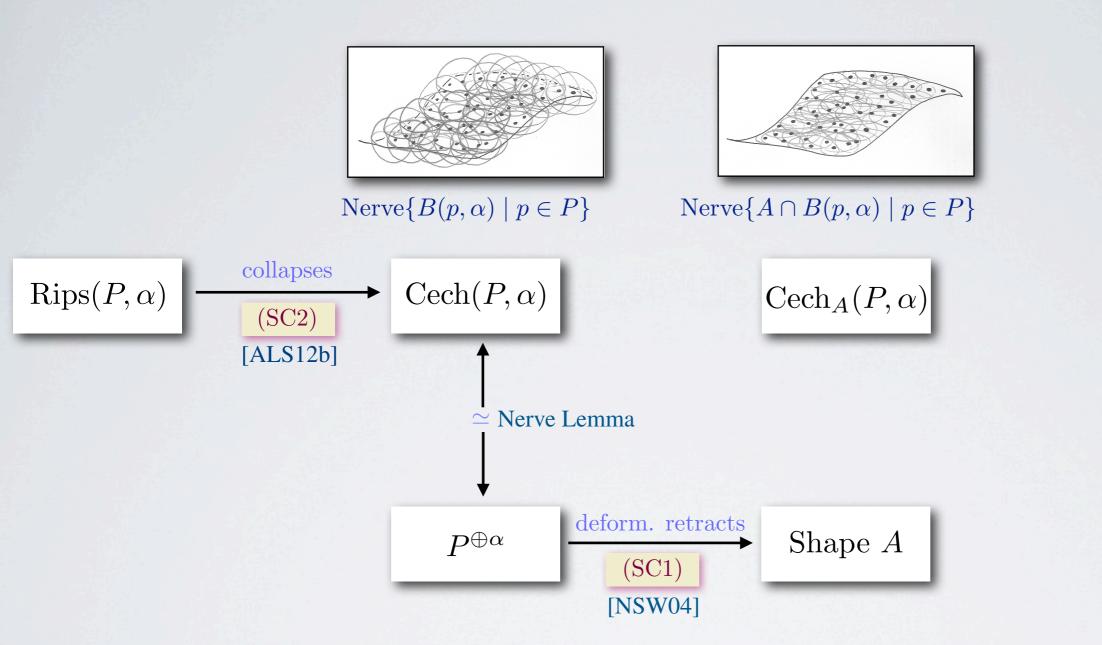


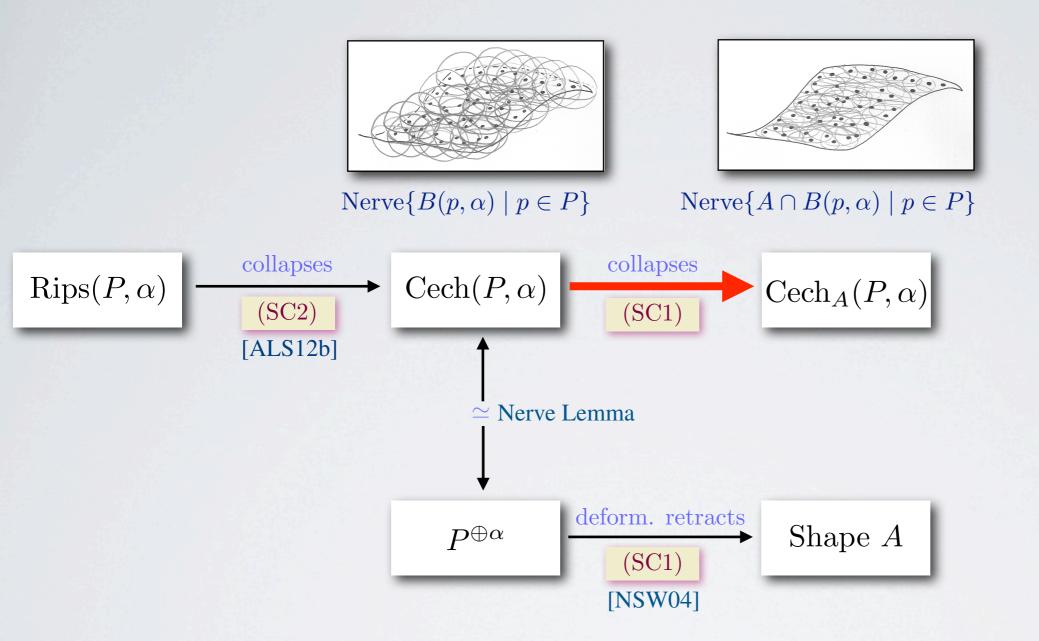


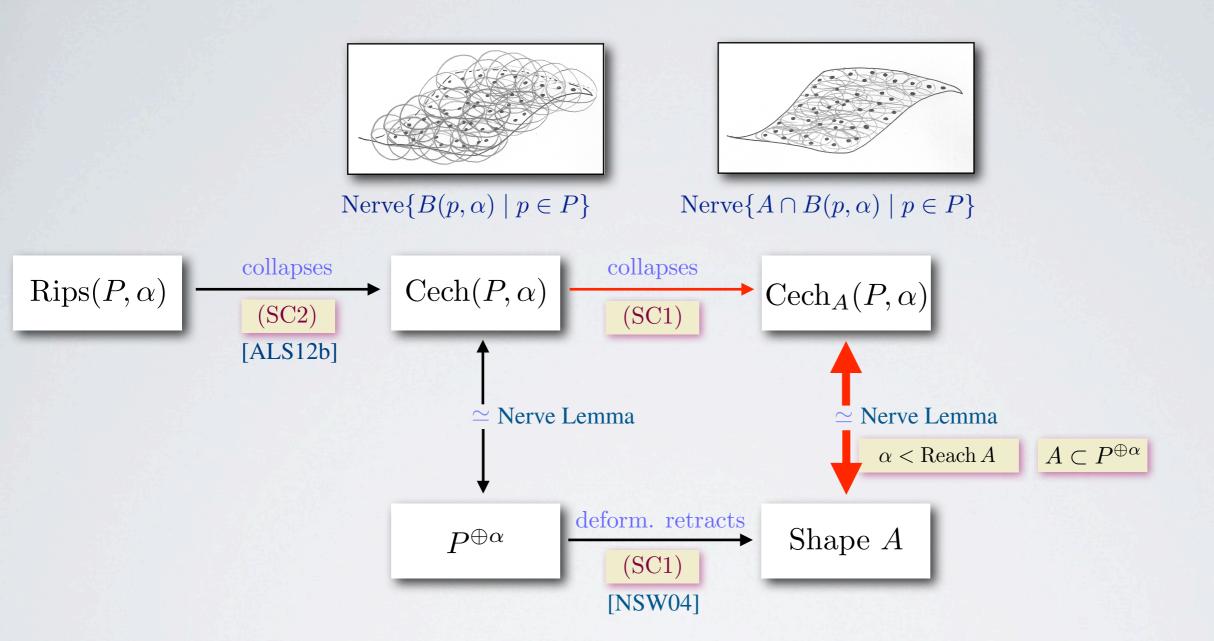


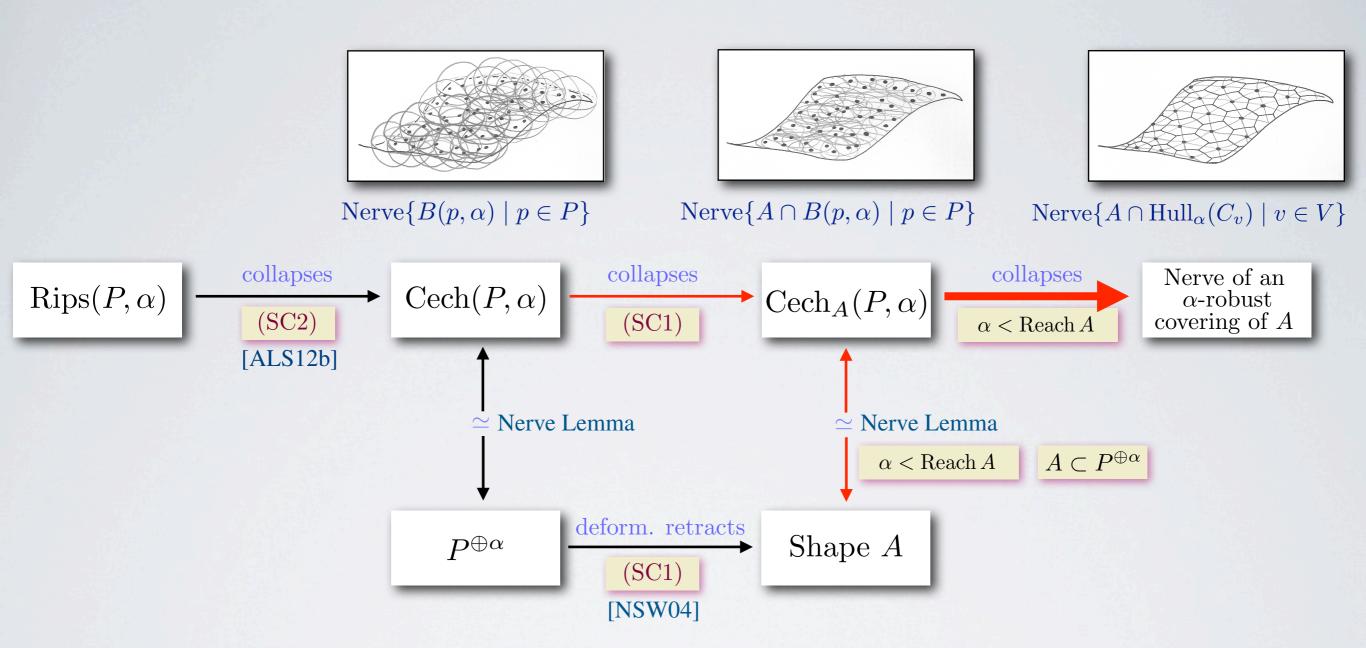


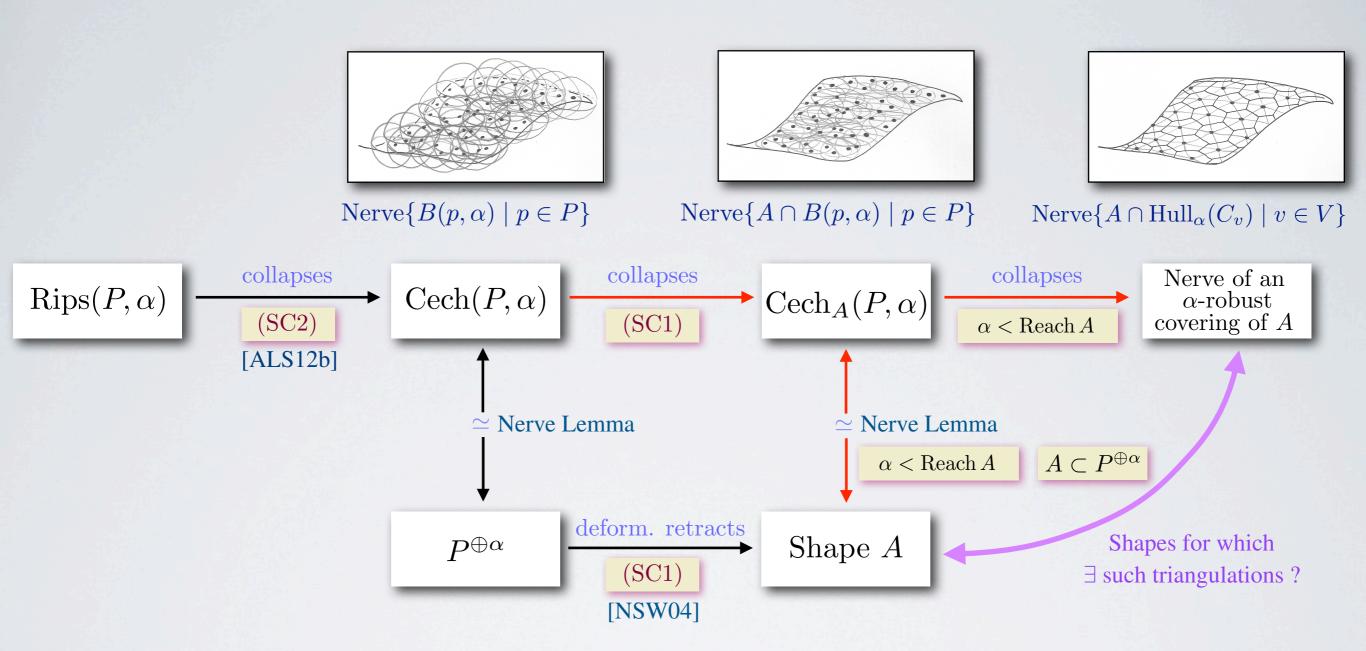


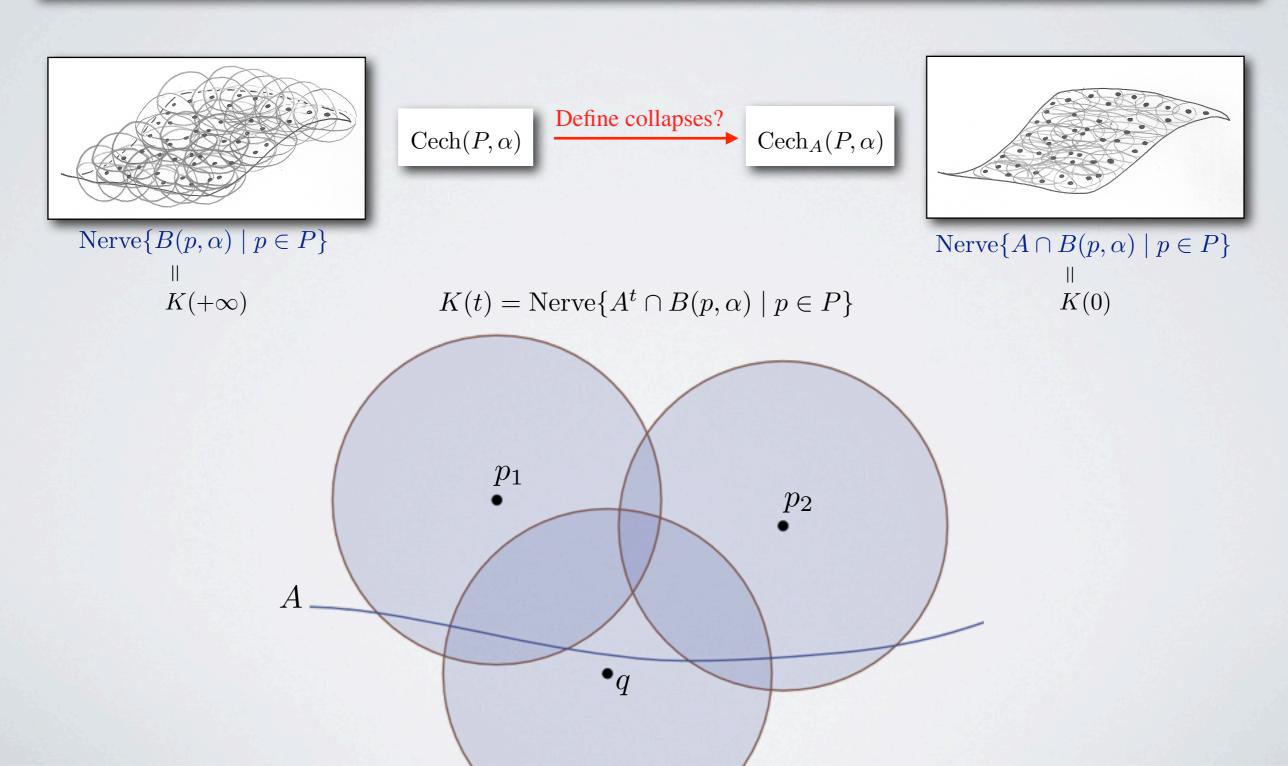


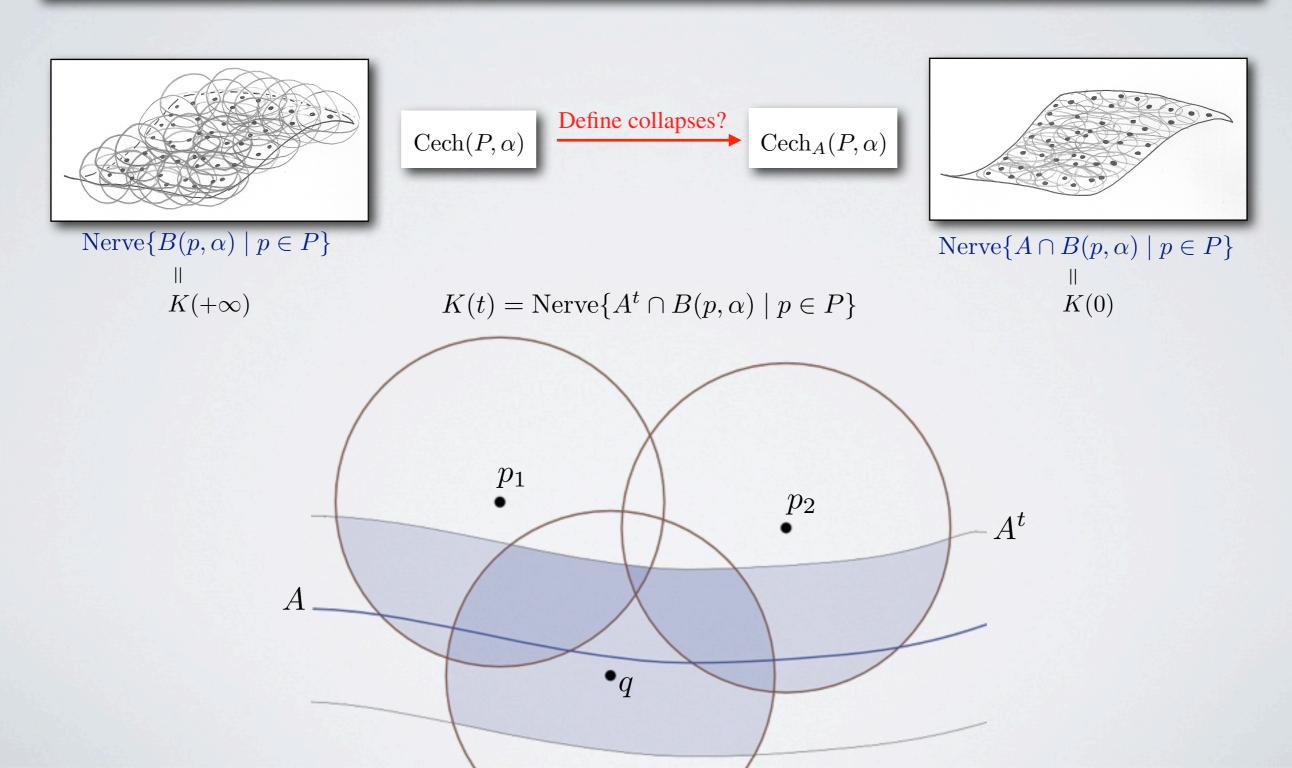


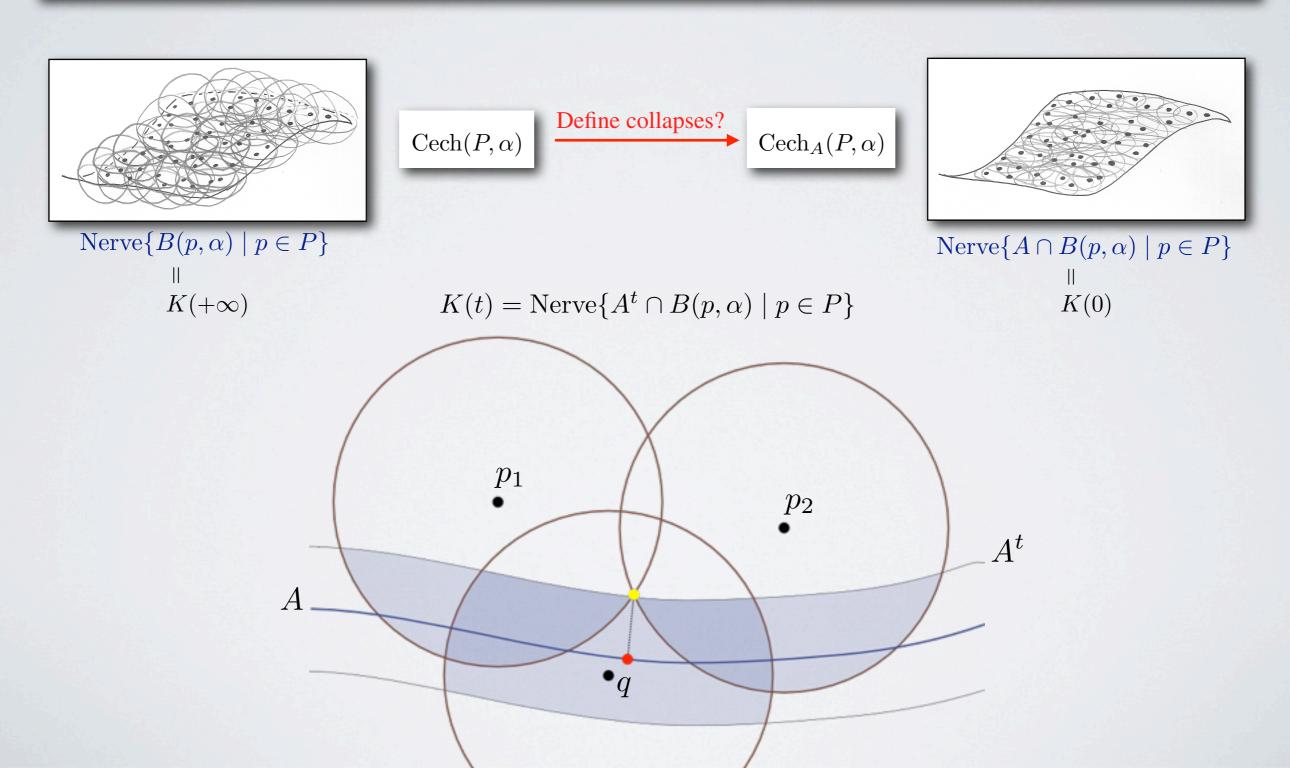


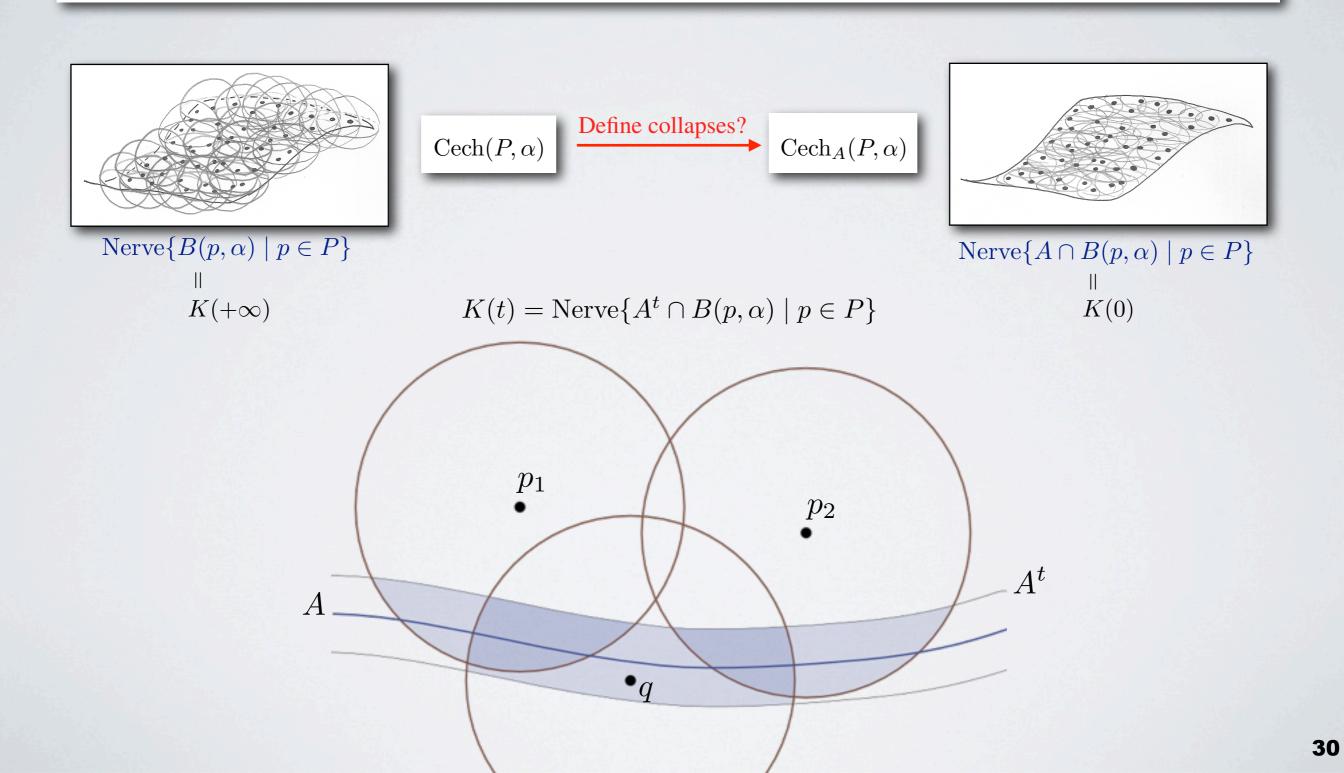






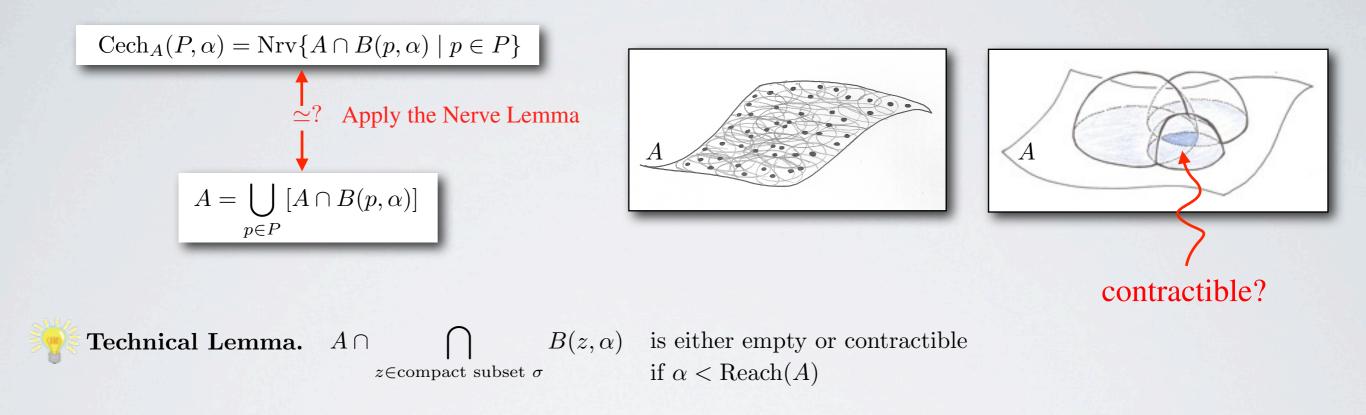






The restricted Čech complex

Theorem 1 If $\alpha < \operatorname{Reach}(A)$ and $A \subset P^{\oplus \alpha}$, then $\operatorname{Cech}_A(P, \alpha) \simeq A$.



The restricted Čech complex

Theorem 1 If $\alpha < \operatorname{Reach}(A)$ and $A \subset P^{\oplus \alpha}$, then $\operatorname{Cech}_A(P, \alpha) \simeq A$.

$$Cech_{A}(P, \alpha) = Nrv\{A \cap B(p, \alpha) \mid p \in P\}$$

$$Apply the Nerve Lemma$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$Eccompact subset \sigma$$

$$B(z, \alpha) is either empty or contractible if \alpha < Reach(A)$$

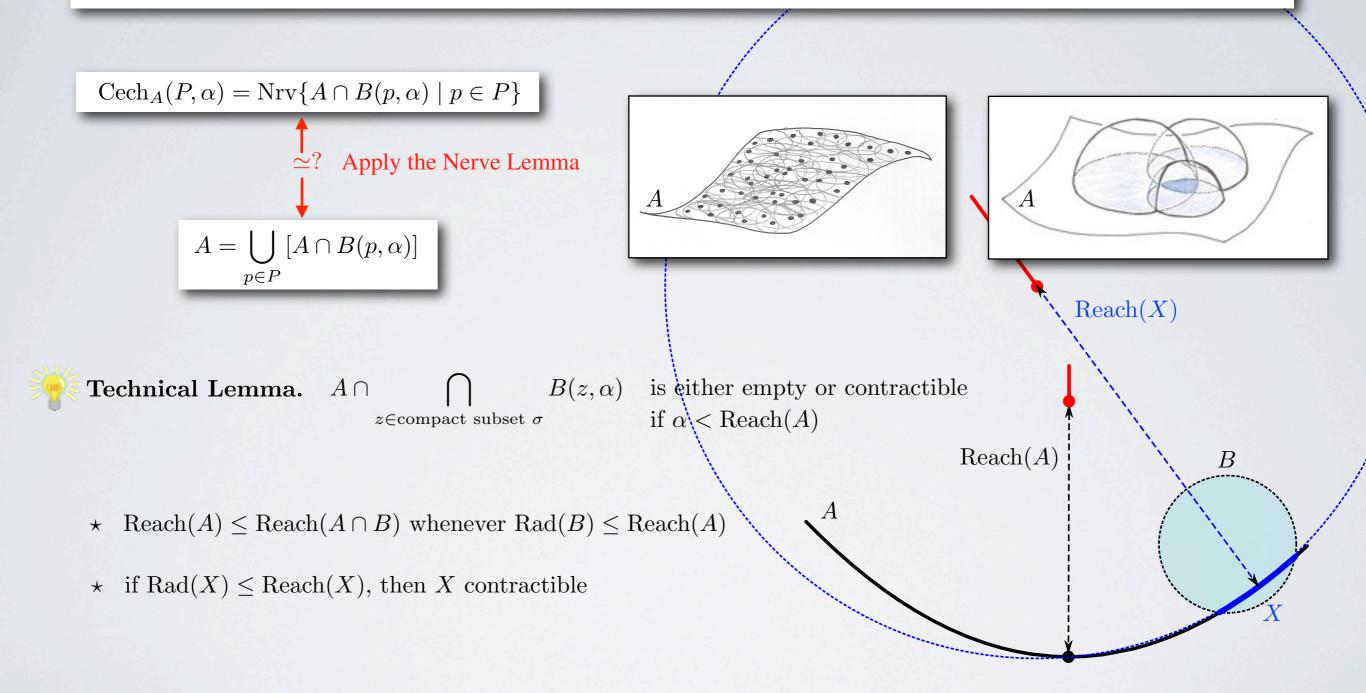
$$Reach(A)$$

$$Reach(A) \leq Reach(A \cap B) whenever Rad(B) \leq Reach(A)$$

$$* if Rad(X) \leq Reach(X), then X contractible$$

The restricted Čech complex

Theorem 1 If $\alpha < \operatorname{Reach}(A)$ and $A \subset P^{\oplus \alpha}$, then $\operatorname{Cech}_A(P, \alpha) \simeq A$.



The restricted Čech complex

Theorem 1 If $\alpha < \operatorname{Reach}(A)$ and $A \subset P^{\oplus \alpha}$, then $\operatorname{Cech}_A(P, \alpha) \simeq A$.

$$Cech_{A}(P, \alpha) = Nrv\{A \cap B(p, \alpha) \mid p \in P\}$$

$$Apply the Nerve Lemma$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$Fechnical Lemma. A \cap \bigcap_{x \in compact subset \sigma} B(z, \alpha) \text{ is either empty or contractible} if \alpha < Reach(A)$$

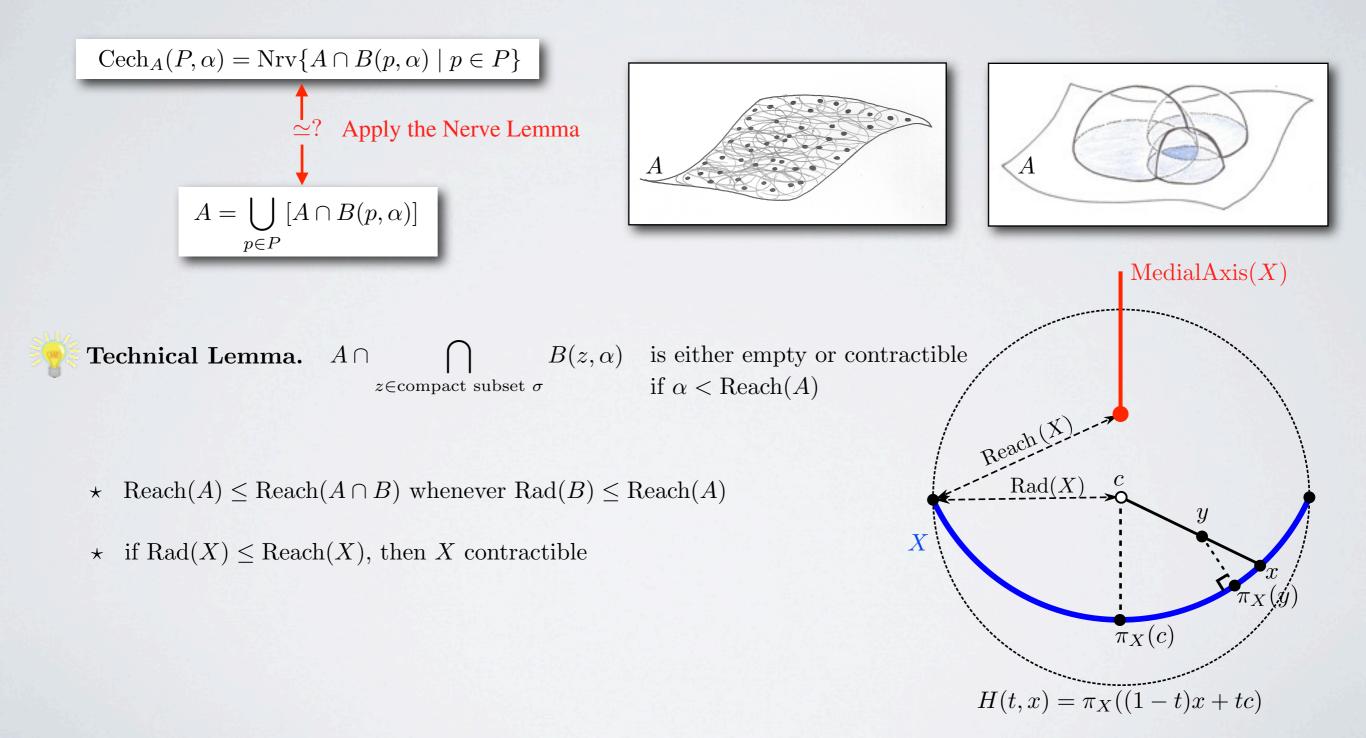
$$Reach(A)$$

$$Reach(A) \leq Reach(A \cap B) \text{ whenever } Rad(B) \leq Reach(A)$$

$$A = if Rad(X) \leq Reach(X), \text{ then } X \text{ contractible}$$

The restricted Čech complex

Theorem 1 If $\alpha < \operatorname{Reach}(A)$ and $A \subset P^{\oplus \alpha}$, then $\operatorname{Cech}_A(P, \alpha) \simeq A$.



The restricted Čech complex

Theorem 1 If $\alpha < \operatorname{Reach}(A)$ and $A \subset P^{\oplus \alpha}$, then $\operatorname{Cech}_A(P, \alpha) \simeq A$.

$$Cech_{A}(P, \alpha) = Nrr\{A \cap B(p, \alpha) \mid p \in P\}$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$B = (A \cap B)$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$B = (A \cap B)$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$B = (A \cap B)$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$B = (A \cap B)$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$B = (A \cap B(p, \alpha)]$$

$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

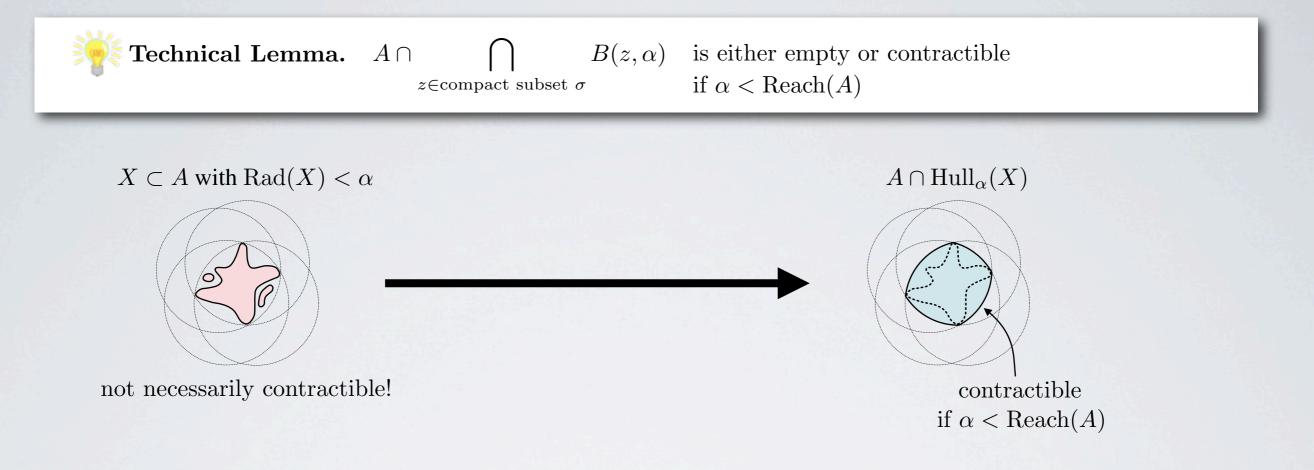
$$A = \bigcup_{p \in P} [A \cap B(p, \alpha)]$$

$$B = (A \cap B(p, \alpha)]$$

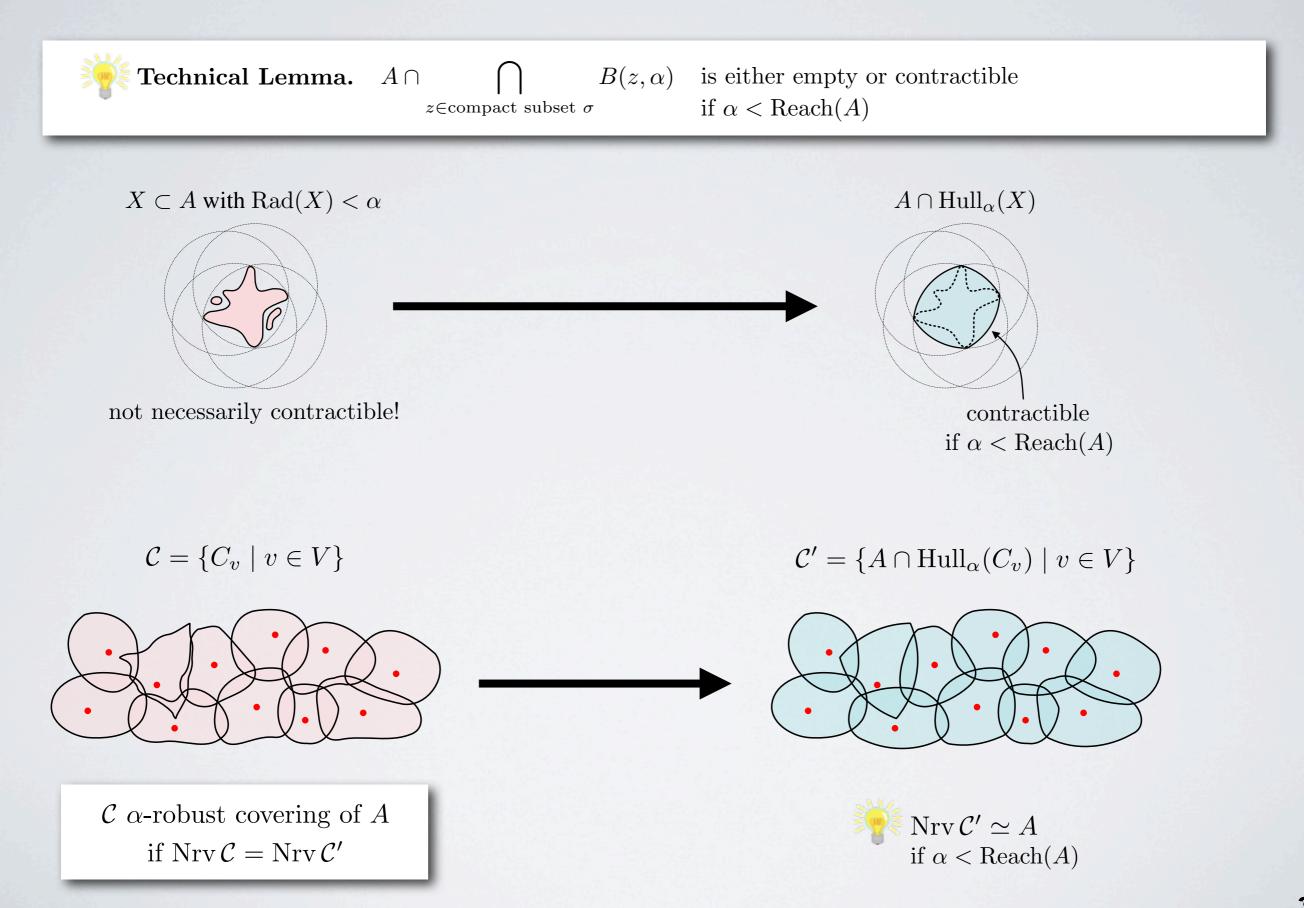
$$B = (A \cap B(p, \alpha))$$

$$A =$$

α-robust coverings



α-robust coverings

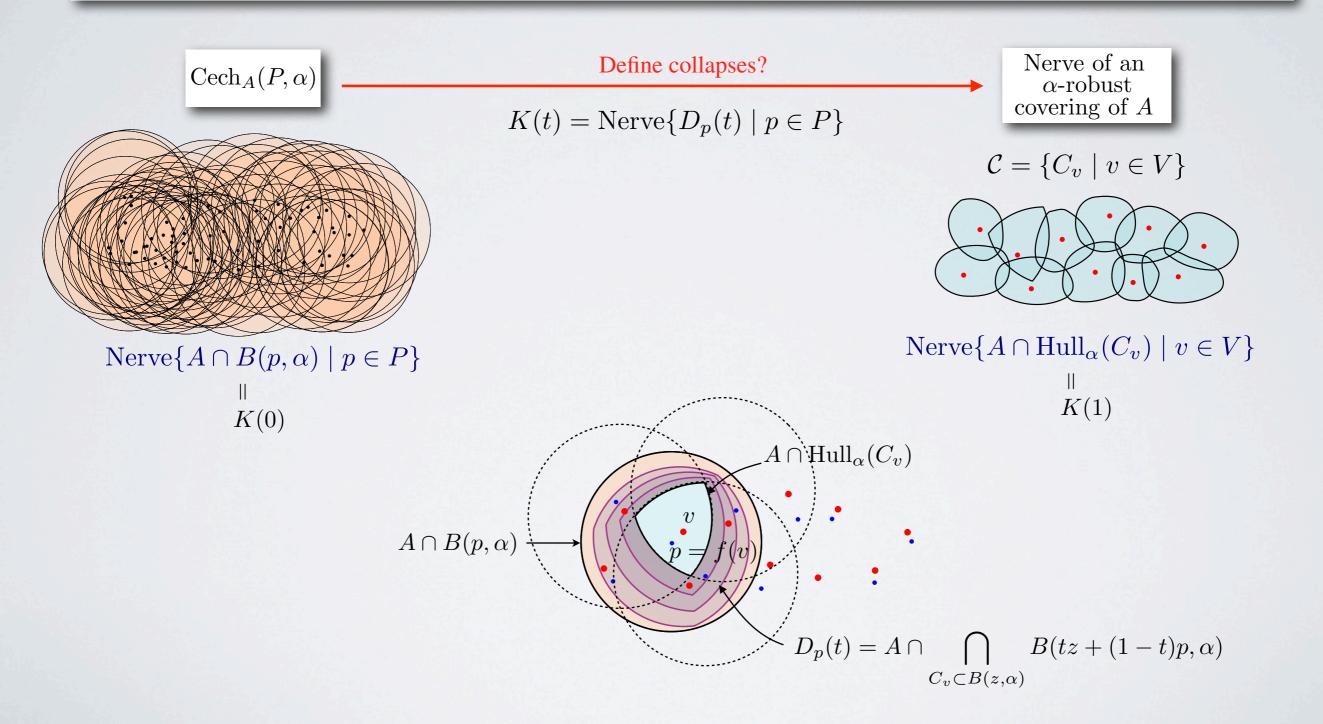


Collapsing restricted Čech complex

Theorem 3 Let $C = \{C_v \mid v \in V\}$ an α -robust covering of A with $V \subset P$. Suppose there exists $f : V \to P$ injective such that $C_v \subset B^{\circ}(f(v), \alpha))$. If $\alpha < \operatorname{Reach}(A)$, then there is a sequence of collapses from $\operatorname{Cech}_A(P, \alpha)$ to $\operatorname{Nrv} C$.

Collapsing restricted Čech complex

Theorem 3 Let $C = \{C_v \mid v \in V\}$ an α -robust covering of A with $V \subset P$. Suppose there exists $f : V \to P$ injective such that $C_v \subset B^{\circ}(f(v), \alpha))$. If $\alpha < \operatorname{Reach}(A)$, then there is a sequence of collapses from $\operatorname{Cech}_A(P, \alpha)$ to $\operatorname{Nrv} C$.



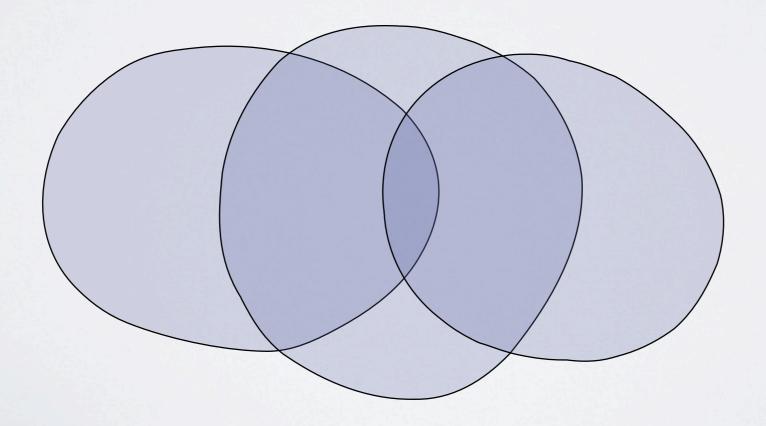
Evolving family of compact sets

Suppose $K(t) = \text{Nerve}\{D_p(t) \mid p \in P\}$ such that $\forall t_1 < t_2, \forall \sigma \subset P, \forall t$

(a) $\bigcap_{p \in \sigma} D_p(t)$ empty or connected ;

- (b) before disappearing $\bigcap_{p \in \sigma} D_p(t)$ is reduced to a single point.
- (c) $D_p(t_2) \subset D_p(t_1)^\circ$;

Then, generically K(t) undergoes collapses as t increases.



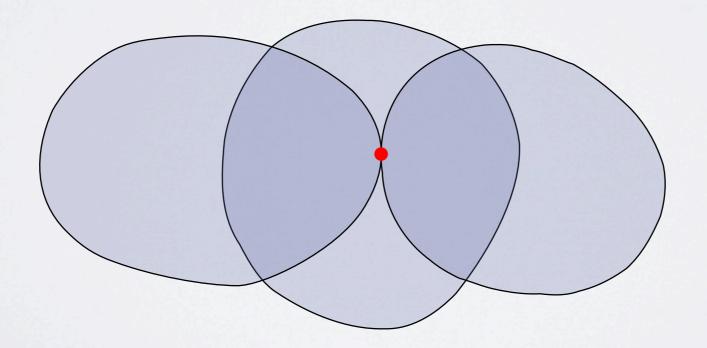
Evolving family of compact sets

Suppose $K(t) = \text{Nerve}\{D_p(t) \mid p \in P\}$ such that $\forall t_1 < t_2, \forall \sigma \subset P, \forall t$

(a) $\bigcap_{p \in \sigma} D_p(t)$ empty or connected ;

- (b) before disappearing $\bigcap_{p \in \sigma} D_p(t)$ is reduced to a single point.
- (c) $D_p(t_2) \subset D_p(t_1)^\circ$;

Then, generically K(t) undergoes collapses as t increases.



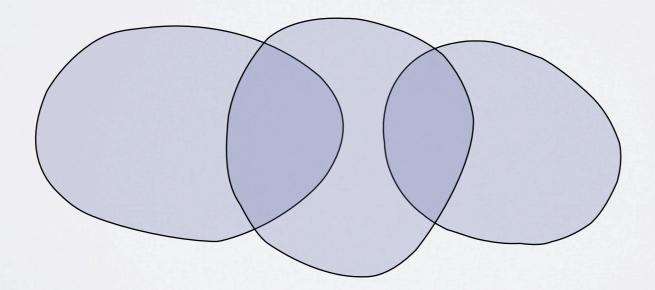
Evolving family of compact sets

Suppose $K(t) = \text{Nerve}\{D_p(t) \mid p \in P\}$ such that $\forall t_1 < t_2, \forall \sigma \subset P, \forall t$

(a) $\bigcap_{p \in \sigma} D_p(t)$ empty or connected ;

- (b) before disappearing $\bigcap_{p \in \sigma} D_p(t)$ is reduced to a single point.
- (c) $D_p(t_2) \subset D_p(t_1)^\circ$;

Then, generically K(t) undergoes collapses as t increases.

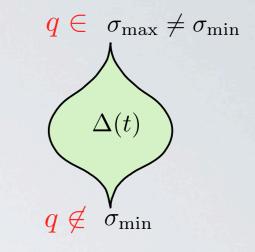


Steps for proving that collapses

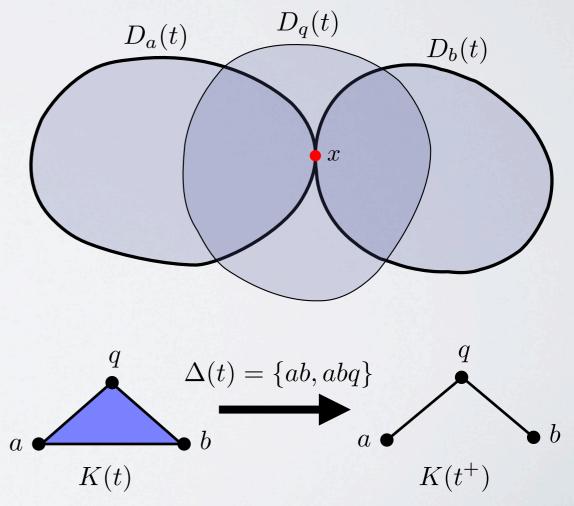
 $K(t) = \operatorname{Nerve}\{D_p(t) \mid p \in P\}$

 $\Delta(t) = \text{set of simplices that disappear at time } t$

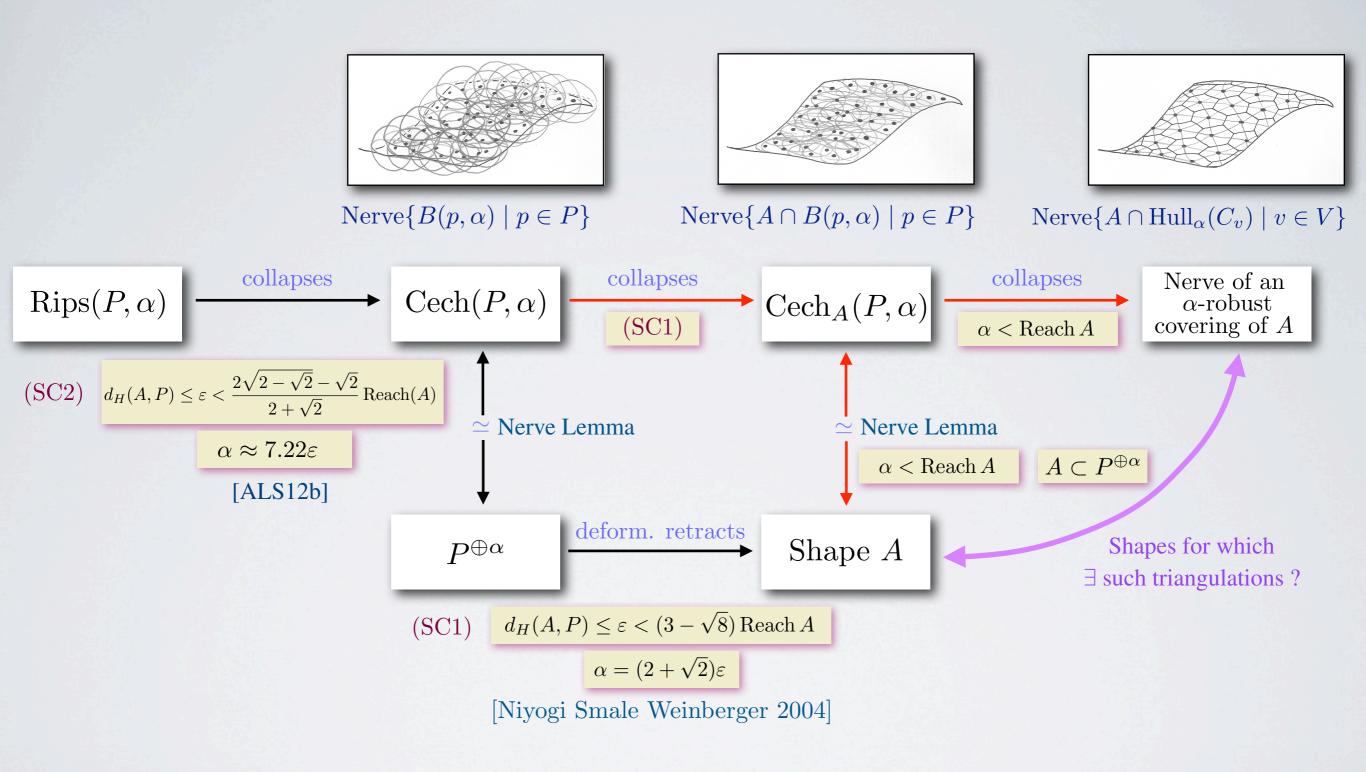
Does the operation that removes $\Delta(t)$ from K(t) a collapse?



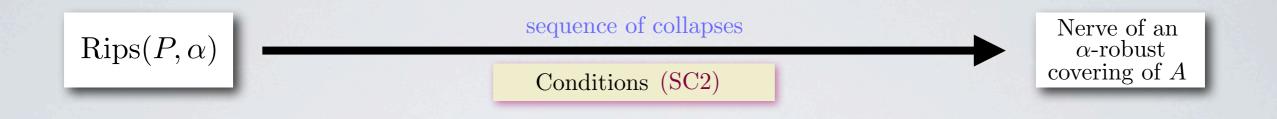
- (1) Generically, $\Delta(t)$ has a unique minimal element σ_{\min}
- (2) $\bigcap_{p \in \sigma_{\min}} D_p(t) = \{x\}$
- (3) $\sigma_{\max} = \{ p \in P \mid x \in D_p(t) \}$
- (4) $x \in \partial D_p(t), \quad \forall p \in \sigma_{\min}$
- (5) $\exists q \in P \text{ such that } x \in D_q(t)^\circ$
- (6) $\sigma_{\min} \neq \sigma_{\max} \implies \text{removing } \Delta(t) \text{ is a collapse}$



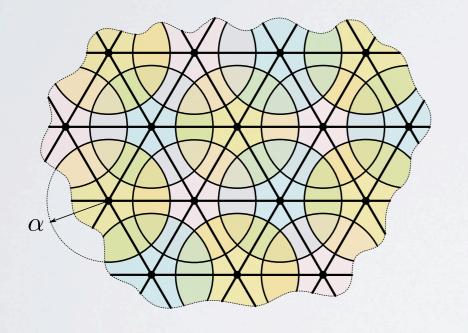
Summary



α-Nice triangulations

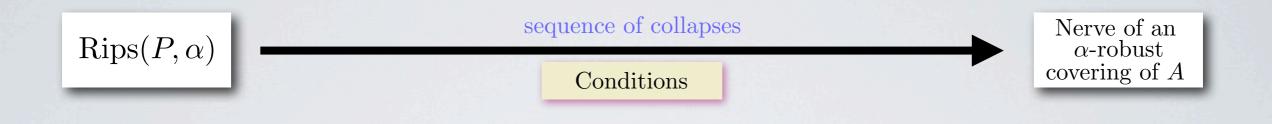


A triangulation of A is α -nice if nerve of an α -robust covering of A

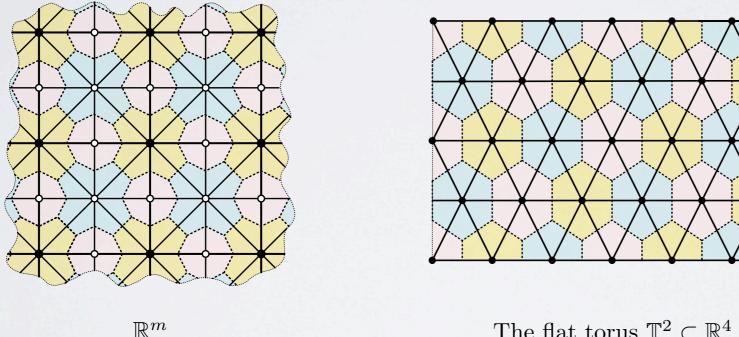


 $T = \text{triangulation of } \mathbb{R}^2 \text{ with equilateral triangles}$ $\mathcal{C} = \{B(v, \alpha) \mid v \in \text{Vertices}(T)\} \ \setminus B(v, \alpha) \subset \text{St}_T(v)$ $\text{Then, } T = \text{Nerve}(\mathcal{C})$ $\mathcal{C} : \alpha \text{-robust}$ $T : \alpha \text{-nice}$

Nicely triangulable spaces



A space is "nicely triangulable" if it has an α -nice triangulation for all α



The flat torus $\mathbb{T}^2 \subset \mathbb{R}^4$

Can we find other spaces that are "nicely triangulable"? Can we turn all this into a practical algorithm?

