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in R2

ProcessingReconstruction

Simplicial complex Medial axisn points

in 2D

Delaunay complex

Building Heuristics(1995 – 2005)

(Crust, Power crust, Co-cone, Wrap, . . . )

Delaunay of 10M points in 2D ≈ 10 sEmpty circle property ✴ In R2, has size O(n)



Delaunay of 10M points in 3D ≈ 80 sEmpty sphere property

5

in R3

ProcessingReconstruction

Simplicial complex Medial axis

Delaunay complex

n points

in 3D

Building (1995 – 2005)

(Crust, Power crust, Co-cone, Wrap, . . . )

✴
In practice, has size O(n)✴

In R3, has size O(n2)
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ProcessingReconstruction

Simplicial complex

Delaunay complex

in Rd
n points

curse of dimensionality

Shape

Medial axis

Betti numbers

Volume

. . .

Signatures

Rd

in dD

✴

In Rd, has size O(n!d/2")✴

The bound is tight (and achieved for points that sample curves).

Building
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/////////////Building

ProcessingReconstruction

Simplicial complex

Delaunay complex

How to reconstruct without Delaunay?

in Rd
n points
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/////////////Building

ProcessingReconstruction

Simplicial complex

Delaunay complex

How to reconstruct without Delaunay?

in Rd
n points

Shape

Medial axis

Betti numbers

Volume

. . .

Signatures

Guaranties on the result?

Rd

in dD
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How to reconstruct without building 
the whole Delaunay complex?

 

 

 

weak Delaunay triangulation
[V. de Silva 2008]

tangential Delaunay complexes

[J. D. Boissonnat & A. Ghosh 2010]

tangent plane

Rips complexes

our approach with André Lieutier and David Salinas

Landmarks

w
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Rips(P,α) = {σ ⊂ P | Diameter(σ) ≤ 2α}

easy to compute

compressed form of  storage through the 1-skeleton

a

✹
✹

✹

✹ proximity graph          connects every pair of  points within        Gα

Rips(P,α) = FlagGα
[FlagG = largest complex whose 1-skeleton is G]

Rips complexes

α

2α

b

c



SHAPE RECONSTRUCTION
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Reconstruction

Rips(P,α)P ⊂ R
d

Shape A

Compressed form of  storage
through the 1-skeleton

which is easy to compute



SHAPE RECONSTRUCTION
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Reconstruction

Rips(P,α)P ⊂ R
d

Shape A

Compressed form of  storage
through the 1-skeleton

which is easy to compute

� Sampling conditions [AL10][ALS12b]



SHAPE RECONSTRUCTION
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Reconstruction

Rips(P,α)P ⊂ R
d

Shape A

Simplification

➊

➋

Reduce the size

Retrieve topology

Triangulation of A

Can be high-dimensional!

Compressed form of  storage
through the 1-skeleton

which is easy to compute

� Sampling conditions [AL10][ALS12b]



Physical system
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Correct homotopy type

Point cloud in R
128

2

Rips complex

Correct intrinsic dimension

Example

Polygonal curve

Is high-dimensional!



Simplification by iteratively 
applying elementary operations
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 Contraction

Collapse ab

Edge contraction ab !→ c

 

 
 

 
 

Identifies vertices a and b to vertex c

a b
c

a b

x

y

x

y

∆

LkK(σ) = {τ | τ ∩ σ = ∅, τ ∪ σ ∈ K}

Preserves homotopy type if LkK (ab) = LkK (a) ∩ LkK (b) = ∩

Collapse of a simplex σmin

Removes σmin and its cofaces ∆

Preserves homotopy type if ∆ has a unique maximal element σmax �= σmin

σmin

σmax �= σmin



Does a simplification exist?
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Different strategies:

Edge contractions;

Vertex and edge collapses;

Seems to work well in practice ...

And yet, not at all obvious that the Rips complex whose vertices 
sample a shape contains a subcomplex homeomorphic to that shape.

A triangulated Bing’s house is contractible but not collapsible

Geometry has to play a key role.



Simplifying Rips complexes
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Unfortunately:

the proof is not constructive (no algorithm!);

it only works for shapes that have an α-nice triangulation!

A ⊂ Rd is a compact set

P ⊂ Rd is a finite point set

α > 0

Rips(P,α) triangulation
α-nice

of shape A

sequence of collapses

Conditions



�
C, where C = {Cp | p ∈ P} finite collection of closed sets

A key tool
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Nerve Lemma.!

If
�

z∈σ Cz is either empty or contractible

Nerve C = {σ ⊂ P | σ �= ∅ and
�

p∈σ

Cp �= ∅}



Cech complexes
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ˇ

α
p

α-offset of PP⊕α =
�

p∈P

B(p,α)

Nerve Lemma.!

Cech(P,α) = Nerve{B(p,α) | p ∈ P}



Cech complexes
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α
p

α-offset of PP⊕α =
�

p∈P

B(p,α)

Nerve Lemma.!

Cech(P,α) = Nerve{B(p,α) | p ∈ P}Rips(P,α) ⊃

ˇ



Overview of what we knew!
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P⊕α

Rips(P,α) Cech(P,α)⊃

Nerve Lemma!



Overview of what we knew!
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P⊕α Shape A

Rips(P,α) Cech(P,α)

ReachA = d(A,MedialAxis(A))

A

⊃

Nerve Lemma!

dH(A,P ) ≤ ε < (3−
√
8)ReachA

α = (2 +
√

2)ε

[Niyogi Smale Weinberger 2004]

(SC1)

deform. retracts

MedialAxis(A) = {m ∈ Rd | m has at least two closest points in A }



Overview of what we knew!
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deform. retracts
P⊕α Shape A

Rips(P,α) Cech(P,α)

ReachA = d(A,MedialAxis(A))

A

Nerve Lemma!

dH(A,P ) ≤ ε < (3−
√
8)ReachA

α = (2 +
√

2)ε

[Niyogi Smale Weinberger 2004]

collapses

dH(A,P ) ≤ ε <
2
�
2−

√
2−

√
2

2 +
√
2

Reach(A)

α ≈ 7.22ε

[ALS12b]

(SC1)

(SC2)

MedialAxis(A) = {m ∈ Rd | m has at least two closest points in A }



Overview of what we knew!

22

P⊕α Shape A

Rips(P,α) Cech(P,α)
collapses

! Nerve Lemma

[NSW04]

(SC1)

deform. retracts

(SC2)

[ALS12b]



Overview of what is new
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P⊕α Shape A

Rips(P,α) Cech(P,α) CechA(P,α)

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P}

! Nerve Lemma

collapses

deform. retracts

[NSW04]

(SC1)

(SC2)

[ALS12b]



Overview of what is new
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P⊕α Shape A

Rips(P,α) Cech(P,α) CechA(P,α)

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P}

! Nerve Lemma

collapses

deform. retracts

collapses

(SC1)

[NSW04]

(SC1)

(SC2)

[ALS12b]



Overview of what is new
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P⊕α Shape A

Rips(P,α) Cech(P,α) CechA(P,α)
collapses

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P}

! Nerve Lemma !

α < ReachA

Nerve Lemma

A ⊂ P⊕α

deform. retracts

[NSW04]

(SC1)

(SC2)

[ALS12b]
(SC1)

collapses



Overview of what is new
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α < ReachA

Nerve Lemma

P⊕α Shape A

Rips(P,α) Cech(P,α) CechA(P,α)
collapses

α < ReachA

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P} Nerve{A ∩Hullα(Cv) | v ∈ V }

! !Nerve Lemma

α-robust
covering of A

Nerve of an

A ⊂ P⊕α

deform. retracts

collapses

[NSW04]

(SC1)

(SC2)

[ALS12b]
(SC1)

collapses



Overview of what is new
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α < ReachA

Nerve Lemma

P⊕α Shape A

Rips(P,α) Cech(P,α) CechA(P,α)
collapses

α < ReachA

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P} Nerve{A ∩Hullα(Cv) | v ∈ V }

! !Nerve Lemma

α-robust
covering of A

Nerve of an

Shapes for which

∃ such triangulations ?

A ⊂ P⊕α

deform. retracts

collapses

(SC1)

collapses

[NSW04]

(SC1)

(SC2)

[ALS12b]



Restricting the Cech complex
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ˇ

A

q

p1
p2

Theorem 2 If dH(A,P ) ≤ ε < (3 −
√
8)Reach(A) and α = (2 +

√
2)ε, then

there exists a sequence of collapses from Cech(P,α) to CechA(P,α).

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P}

Cech(P,α) CechA(P,α)

K(t) = Nerve{At ∩B(p,α) | p ∈ P}

Define collapses?

K(+∞) K(0)

= =



Restricting the Cech complex

28

ˇ

A

q

p1
p2

Theorem 2 If dH(A,P ) ≤ ε < (3 −
√
8)Reach(A) and α = (2 +

√
2)ε, then

there exists a sequence of collapses from Cech(P,α) to CechA(P,α).

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P}

Cech(P,α) CechA(P,α)

K(t) = Nerve{At ∩B(p,α) | p ∈ P}

Define collapses?

K(+∞) K(0)

= =

A
t



Restricting the Cech complex
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ˇ

A

q

p1
p2

Theorem 2 If dH(A,P ) ≤ ε < (3 −
√
8)Reach(A) and α = (2 +

√
2)ε, then

there exists a sequence of collapses from Cech(P,α) to CechA(P,α).

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P}

Cech(P,α) CechA(P,α)

K(t) = Nerve{At ∩B(p,α) | p ∈ P}

Define collapses?

K(+∞) K(0)

= =

A
t



Restricting the Cech complex
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ˇ

A

q

p1
p2

Theorem 2 If dH(A,P ) ≤ ε < (3 −
√
8)Reach(A) and α = (2 +

√
2)ε, then

there exists a sequence of collapses from Cech(P,α) to CechA(P,α).

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P}

Cech(P,α) CechA(P,α)

K(t) = Nerve{At ∩B(p,α) | p ∈ P}

Define collapses?

K(+∞) K(0)

= =

A
t



The restricted Cech complex
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ˇ

!
!

Apply the Nerve Lemma

CechA(P,α) = Nrv{A ∩B(p,α) | p ∈ P}

A =
�

p∈P

[A ∩B(p,α)]

!?

Technical Lemma. is either empty or contractibleA ∩
�

z∈compact subset σ

B(z,α)

Theorem 1 If α < Reach(A) and A ⊂ P⊕α, then CechA(P,α) � A.

AA

if α < Reach(A)

contractible?



The restricted Cech complex
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ˇ

!
!

Apply the Nerve Lemma

CechA(P,α) = Nrv{A ∩B(p,α) | p ∈ P}

A =
�

p∈P

[A ∩B(p,α)]

!?

Technical Lemma. is either empty or contractible

� Reach(A) ≤ Reach(A ∩B) whenever Rad(B) ≤ Reach(A)

� if Rad(X) ≤ Reach(X), then X contractible

A ∩
�

z∈compact subset σ

B(z,α)

B

X

A

Reach(A)

MedialAxis(A)

Theorem 1 If α < Reach(A) and A ⊂ P⊕α, then CechA(P,α) � A.

AA

if α < Reach(A)



The restricted Cech complex
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ˇ

!
!

Apply the Nerve Lemma

CechA(P,α) = Nrv{A ∩B(p,α) | p ∈ P}

A =
�

p∈P

[A ∩B(p,α)]

!?

Technical Lemma. is either empty or contractible

� Reach(A) ≤ Reach(A ∩B) whenever Rad(B) ≤ Reach(A)

� if Rad(X) ≤ Reach(X), then X contractible

A ∩
�

z∈compact subset σ

B(z,α)

B

X

A

Reach(A)

Theorem 1 If α < Reach(A) and A ⊂ P⊕α, then CechA(P,α) � A.

AA

if α < Reach(A)

Reach(X)



The restricted Cech complex
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ˇ

!
!

Apply the Nerve Lemma

CechA(P,α) = Nrv{A ∩B(p,α) | p ∈ P}

A =
�

p∈P

[A ∩B(p,α)]

!?

Technical Lemma. is either empty or contractible

� Reach(A) ≤ Reach(A ∩B) whenever Rad(B) ≤ Reach(A)

� if Rad(X) ≤ Reach(X), then X contractible

A ∩
�

z∈compact subset σ

B(z,α)

X

A

Reach(A)

Theorem 1 If α < Reach(A) and A ⊂ P⊕α, then CechA(P,α) � A.

AA

if α < Reach(A)

Reach(X)



The restricted Cech complex
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ˇ

!
!

Apply the Nerve Lemma

CechA(P,α) = Nrv{A ∩B(p,α) | p ∈ P}

A =
�

p∈P

[A ∩B(p,α)]

!?

Technical Lemma. is either empty or contractible

� Reach(A) ≤ Reach(A ∩B) whenever Rad(B) ≤ Reach(A)

� if Rad(X) ≤ Reach(X), then X contractible

A ∩
�

z∈compact subset σ

B(z,α)

Rea
ch (

X)

Rad(X) c

x

H(t, x) = πX((1− t)x+ tc)

X

MedialAxis(X)

Theorem 1 If α < Reach(A) and A ⊂ P⊕α, then CechA(P,α) � A.

AA

if α < Reach(A)

y

πX(y)

πX(c)



The restricted Cech complex

35

ˇ

!
!

Apply the Nerve Lemma

CechA(P,α) = Nrv{A ∩B(p,α) | p ∈ P}

A =
�

p∈P

[A ∩B(p,α)]

!?

Technical Lemma. is either empty or contractible

� Reach(A) ≤ Reach(A ∩B) whenever Rad(B) ≤ Reach(A)

� if Rad(X) ≤ Reach(X), then X contractible

Rad(A ∩
�

z∈σ

B(z,α)) ≤ α < Reach(A) ≤ Reach(A ∩
�

z∈σ

B(z,α))

A ∩
�

z∈compact subset σ

B(z,α)

Rea
ch (

X)

Rad(X) c

x

H(t, x) = πX((1− t)x+ tc)

X

MedialAxis(X)

Theorem 1 If α < Reach(A) and A ⊂ P⊕α, then CechA(P,α) � A.

AA

if α < Reach(A)

y

πX(y)

πX(c)



α-robust coverings
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Technical Lemma. is either empty or contractibleA ∩
�

z∈compact subset σ

B(z,α)
if α < Reach(A)

A ∩Hullα(X)

contractible
if α < Reach(A)

not necessarily contractible!

X ⊂ A with Rad(X) < α



α-robust coverings

36

Technical Lemma. is either empty or contractibleA ∩
�

z∈compact subset σ

B(z,α)
if α < Reach(A)

A ∩Hullα(X)

contractible
if α < Reach(A)

not necessarily contractible!

C = {Cv | v ∈ V } C�
= {A ∩Hullα(Cv) | v ∈ V }

if α < Reach(A)
Nrv C� � AC α-robust covering of A

if Nrv C = Nrv C�

X ⊂ A with Rad(X) < α



Collapsing restricted Cech complex

37

ˇ

CechA(P,α)
Define collapses?

α-robust
covering of A

Nerve of an

Theorem 3 Let C = {Cv | v ∈ V } an α-robust covering of A with V ⊂ P .
Suppose there exists f : V → P injective such that Cv ⊂ B◦(f(v),α)). If
α < Reach(A), then there is a sequence of collapses from CechA(P,α) to Nrv C.



Collapsing restricted Cech complex
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ˇ

CechA(P,α)
Define collapses?

α-robust
covering of A

Nerve of an

Theorem 3 Let C = {Cv | v ∈ V } an α-robust covering of A with V ⊂ P .
Suppose there exists f : V → P injective such that Cv ⊂ B◦(f(v),α)). If
α < Reach(A), then there is a sequence of collapses from CechA(P,α) to Nrv C.

A ∩Hullα(Cv)

A ∩B(p,α)

Nerve{A ∩B(p,α) | p ∈ P} Nerve{A ∩Hullα(Cv) | v ∈ V }

=

=

K(0) K(1)

Dp(t) = A ∩
�

Cv⊂B(z,α)

B(tz + (1− t)p,α)

K(t) = Nerve{Dp(t) | p ∈ P}

v

p = f(v)

C = {Cv | v ∈ V }



Evolving family of compact sets
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Suppose K(t) = Nerve{Dp(t) | p ∈ P} such that ∀t1 < t2, ∀σ ⊂ P , ∀t

Then, generically K(t) undergoes collapses as t increases.

(c) Dp(t2) ⊂ Dp(t1)◦ ;

(b) before disappearing
�

p∈σ Dp(t) is reduced to a single point.

(a)
�

p∈σ Dp(t) empty or connected ;



Evolving family of compact sets
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Suppose K(t) = Nerve{Dp(t) | p ∈ P} such that ∀t1 < t2, ∀σ ⊂ P , ∀t

Then, generically K(t) undergoes collapses as t increases.

(c) Dp(t2) ⊂ Dp(t1)◦ ;

(b) before disappearing
�

p∈σ Dp(t) is reduced to a single point.

(a)
�

p∈σ Dp(t) empty or connected ;



Evolving family of compact sets
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Suppose K(t) = Nerve{Dp(t) | p ∈ P} such that ∀t1 < t2, ∀σ ⊂ P , ∀t

Then, generically K(t) undergoes collapses as t increases.

(c) Dp(t2) ⊂ Dp(t1)◦ ;

(b) before disappearing
�

p∈σ Dp(t) is reduced to a single point.

(a)
�

p∈σ Dp(t) empty or connected ;



Steps for proving that collapses
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∆(t) = set of simplices that disappear at time t

Does the operation that removes ∆(t) from K(t) a collapse?
σmin

∆(t)

σmax != σminq ∈

q !∈

(1) Generically, ∆(t) has a unique minimal element σmin

(6) σmin != σmax =⇒ removing ∆(t) is a collapse

x

K(t) = Nerve{Dp(t) | p ∈ P}

(2)
�

p∈σmin
Dp(t) = {x}

(4) x ∈ ∂Dp(t), ∀p ∈ σmin

(5) ∃q ∈ P such that x ∈ Dq(t)◦

Db(t)
Dq(t)Da(t)

K(t)
a b

q

a b

q

K(t+)

∆(t) = {ab, abq}

(3) σmax = {p ∈ P | x ∈ Dp(t)}



Summary
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α < ReachA

Nerve Lemma

P⊕α Shape A

Rips(P,α) Cech(P,α) CechA(P,α)
collapses

α < ReachA

Nerve{B(p,α) | p ∈ P} Nerve{A ∩B(p,α) | p ∈ P} Nerve{A ∩Hullα(Cv) | v ∈ V }

! !Nerve Lemma

α-robust
covering of A

Nerve of an

Shapes for which

∃ such triangulations ?

A ⊂ P⊕α

deform. retracts

collapses

(SC1)

collapses

dH(A,P ) ≤ ε < (3−
√
8)ReachA

α = (2 +
√

2)ε

[Niyogi Smale Weinberger 2004]

dH(A,P ) ≤ ε <
2
�
2−

√
2−

√
2

2 +
√
2

Reach(A)

α ≈ 7.22ε

[ALS12b]

(SC1)

(SC2)



α-Nice triangulations
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α

R2

Rips(P,α)
sequence of collapses

α-robust
covering of A

Nerve of an

A triangulation of A is α-nice if nerve of an α-robust covering of A

T = triangulation of R2 with equilateral triangles

C = {B(v,α) | v ∈ Vertices(T )} \ B(v,α) ⊂ StT (v)

Then, T = Nerve(C)

C : α-robust

T : α-nice

Conditions (SC2)



Nicely triangulable spaces
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Rm The flat torus T2 ⊂ R4

Rips(P,α)
sequence of collapses

Conditions

α-robust
covering of A

Nerve of an

Can we find other spaces that are “nicely triangulable”?

Can we turn all this into a practical algorithm?

A space is“nicely triangulable” if it has an α-nice triangulation for all α
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