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Nonlinear dimensionality reduction

Original points

Swiss roll embedding

Isomap: k=8
 

L−Isomap: k=8
10 landmarks

L−Isomap: k=8
4 landmarks

L−Isomap: k=8
3 landmarks

output: low-dimensional
coordinate embedding

input: nonlinear observed data

unknown: linear parameter space
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How Isomap works

True distance measured as geodesics along the surface (left)
Surface geodesics approximated by graph geodesics (middle) 
Input graph geodesic distances into classical MDS 
(multidimensional scaling) for coordinate embedding (right)
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Example: face images
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NLDR techniques

Since December 2000:
Isomap (Tenenbaum, dS, Langford)

LLE (Roweis, Saul) 

Laplacian Eigenmaps (Belkin, Niyogi) 

Hessian Eigenmaps (Donoho, Grimes)

...

local affine structure 

diffusion geometry

geodesics

2nd fundamental form
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Laplacian Eigenmaps (Belkin & Niyogi)

Represent data by graph, then:
cochain spaces 

coboundary map

(signed incidence matrix between edges and vertices)

discrete Laplacian

(diagonal entries = -degree; off-diagonal entries 0 or -1)

eigenvalues

eigenfunctions f1, f2, f3, ... as NLDR coordinates

δ : C0
→ C1; δf([ab]) = f(b)− f(a)

∆0 = δ
∗
δ : C

0
→ C

0

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . .

C0 = vector space spanned by vertices ∼= {f : V → R}

C1 = vector space spanned by edges ∼= {α : E → R}

scalar fields

vector fields

discrete gradient
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Laplacian Eigenmaps: Swiss Roll

eigenfunctions constitute an orthonormal basis for all functions V → R

f0, f1, f2, ... successively smoothest functions

eigenfunctions 1 to 9eigenfunctions 1 and 2
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NLDR techniques

Since December 2000:
Isomap (Tenenbaum, dS, Langford)

LLE (Roweis, Saul) 

Laplacian Eigenmaps (Belkin, Niyogi) 

Hessian Eigenmaps (Donoho, Grimes)

...

Goal: find useful real-valued coordinate functions on data
Most effective when data lie on the image of a convex region

Nontrivial topology typically causes problems

local affine structure 

diffusion geometry

geodesics

2nd fundamental form

What about circle-valued coordinates?  θ: X ➝ S1
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Betti numbers

Objects in 2 dimensions:
b0 = number of components

b1 = number of holes

Objects in 3 dimensions:
b0 = number of components

b1 = number of tunnels/handles

b2 = number of voids

(and so on...) b0 = 1, b1 = 1, b2 = 0 b0 = 1, b1 = 0, b2 = 1

b0 = 2, b1 = 0 b0 = 1, b1 = 2
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Point-cloud topology

Data sampled from an unknown topological space Y.
Estimate Betti numbers of Y from the sample.

b1 = 3

b1 = 5

b1 = 1
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Persistence: robust multiscale topology

b0: (connected components)

b1: (holes)

Edelsbrunner, Letscher Zomorodian (2000)
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Cohomology
Represent data by graph, then:

cochain spaces 

coboundary map

cohomology

Betti numbers

C0 = vector space spanned by vertices ∼= {f : V → R}

C1 = vector space spanned by edges ∼= {α : E → R}

C2 = vector space spanned by triangles ∼= {α : T → R}

δ : C0
→ C1; δf([ab]) = f(b)− f(a)

δ : C1
→ C2; δα([abc]) = α([bc])− α([ac]) + α([ab])

H
0 =

0-cocycles

0-coboundaries
=

Ker(δ : C0
→ C1)

0

H
1 =

1-cocycles

1-coboundaries
=

Ker(δ : C1
→ C2)

Im(δ : C0 → C1)

b0 = dim(H0)
b1 = dim(H1)

scalar fields

vector fields

skew tensor fields

discrete gradient

discrete curl

curl-free fields / gradient fields

locally constant scalar fields

number of connected components

number of 1-dimensional holes

Wednesday, July 17, 13



Vin de Silva, Pomona College

Topological Dimensionality ReductionACAT 2013, Bremen, Germany

17 July 2013

An idea of Roger Penrose...
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An idea of Roger Penrose...

What is the depth f(x)?
g(x,y) = “f(x)-f(y)” is locally 
consistently defined.

There is no global f(x).

f(x) is definable modulo 
integral around triangle.

cohomology H1(X) = locally consistent g(x,y) / globally consistent f(x)-f(y)

cohomology class in H1(X)

cohomology class is nonzero

circle-valued depth function
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Circular coordinates (dS, Morozov, Vejdemo-Johansson)

[X, S1] = H1(X; Z)

Homotopy classes of maps X ➙ S1

Integer cohomology of X

Classical equation from homotopy theory:

To find circular coordinates:
find integer 1-cocycles of high robustness

project onto the kernel of the 1-Laplacian (for smoothness)

integrate the 1-cocycles to functions onto R/Z
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Interpretation via graph flows

Oriented flow (on edges)

Cocycle condition

Cycle condition

Net flow around each triangle is zero

Net flow into each vertex is zero

↵ : Edges(X) ! Z
↵ : Edges(X) ! R

Find an integer flow satisfying the cocycle condition.
Smoothe to a real flow by imposing the cycle condition (L2-nearest).
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Dual bases

homology cohomology
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Co-circles

cohomologyInteger cocycle a gives rise to 
circle map:

vertices map to base point

edge ab winds k times around circle, 
where k = a(ab)

cocycle condition guarantees that the 
map can be extended over triangles

Not very smooth.
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Harmonic smoothing

homology cohomology
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Harmonic smoothing

homology cohomology
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Hodge theory
harmonic 1-forms

integer homology and cohomology lattices

∂α([v]) = 0 for all v ∈ Vertices(X)

= graph flows which satisfy cycle & cocycle conditions:

smooth circular coordinates
�

harmonic forms in the
integer cohomology lattice

δα([uvw]) = 0 for all [uvw] ∈ Triangles(X)

C
1 = 1-coboundaries ⊕H1 ⊕ 1-boundaries

= Im(δ : C0 → C
1)⊕H1 ⊕ Im(∂ : C2 → C

1)

real-valued functions
(Belkin–Niyogi)

circle-valued functions (in cohomology lattice)

see also: Statistical ranking with Hodge theory (Jiang, Lim, Yao, Ye)

H1(X;Z)! H1(X;R) = H1(X) = H1(X;R) H1(X;Z)
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(The Abel–Jacobi map)

Let H denote the 1-harmonic space of X
Let L1 denote the integer cohomology lattice in H
Let L1 denote the integer homology lattice in H

L1 aj

−→ Maps(X,S1) ⇔ aj ∈ Maps(L1
×X,S1)

⇔ X
aj

−→ Maps(L1, S1)

⇔ X
aj

−→

[

Maps(L1,R)

Maps(L1,Z)

]

⇔ X
aj

−→ H/L1
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L1 aj
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(The Abel–Jacobi map)

Let H denote the 1-harmonic space of X
Let L1 denote the integer cohomology lattice in H
Let L1 denote the integer homology lattice in H

L1 aj

−→ Maps(X,S1) ⇔ aj ∈ Maps(L1
×X,S1)

⇔ X
aj

−→ Maps(L1, S1)

⇔ X
aj

−→

[

Maps(L1,R)

Maps(L1,Z)

]

⇔ X
aj

−→ H/L1

Jacobi torus of X
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Static data
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Noisy circle
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Noisy circle

small
scale

large
scale

Barcode
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Noisy circle

small
scale

large
scale

Barcode
0 0.5 1
0

0.5

1

small scale

large scale

Persistence diagram
intervals [b,d)points (b,d)
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Noisy circle

0 0.5 1
0

0.5

1

small scale

large scale

Persistence diagram
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Noisy circle
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Noisy circle

0 0.5 1
0

0.5

1

small scale

large scale

Persistence diagram
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Trefoil knot

0 0.5 1
0

0.5

1
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Trefoil knot

0 0.5 1
0

0.5

1
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Rotating cube images
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Torus

0 0.5 1 1.5
0

0.5

1

1.5
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Torus
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Torus

0 0.5 1 1.5
0

0.5

1

1.5
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Torus

inferred2 original1

inferred1

inferred2

original1

original2
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Elliptic Curve

400 points randomly chosen on

Use projectively invariant metric
to interpret as points in complex projective plane.

{x2
y + y

2
z + z

2
x = 0} ⇢ S

5 ⇢ C3

d(⇠, ⌘) = cos

�1
(|⇠ · ⌘̄|)

0 0.1 0.2
0

0.1

0.2
coordinate 1

co
or

di
na

te
 2
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Time-series data
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0

@
f(t)

f(t+`)
f(t+2`)

1

A

Figure 1: The first step is to choose parameters and compute a time-delay embedding. The persis-
tence diagram of a distance filtration gives a natural measure of the quality of the embedding based
on which we can change the time-delay parameters.

The theorem states that almost every time-delay embedding of a 1-dimensional measurement (time-
series) can recover the underlying manifold and the dynamics of the system.

This is Step 1 of our contribution: using the time-delay embedding we lift the signal to d-
dimensions, the points of the lifted signal then clustering around some submanifold or other sub-
space of Rd. Takens’ theorem gives a necessary condition for this submanifold to recreate the full
phase space from an idealized continuous signal; but we are faced with finite noisy data, so we must
choose parameters a little more carefully for a ‘good’ embedding.

The original 1-dimensional signal is now a path in a higher-dimensional phase space. Periodic and
recurrent behavior is characterized by the path returning to itself, creating one or more loops, that is
to say topological circles. For example, the simplest periodic system is a sinusoid, which precisely
traces out a circle in phase space. The circle is not present in the 1-dimensional signal, but appears
upon boosting to 2 dimensions by a delay embedding {t 7! (sin(t), sin(t + a))}.

Step 2 is to use persistent cohomology to detect these circles, or rather co-circles: coordinate func-
tions from the phase space to the standard unit circle. A well-known result in algebraic topology
asserts that co-circles are classified (up to homotopy) by 1-dimensional cohomology. Due to space
constraints, we refer the reader to [4] for details of how this is done.

Since we are working with finite noisy data, we use topological persistence to identify the most
robust of these coordinates. Each co-circle is associated to a point in the persistence diagram whose
position indicates its robustness. As a useful side-effect, this can be used as a proxy for the quality
of the Takens embedding; we can tune the delay parameters to maximize robustness.

Step 3 is to observe the dynamics in the new circular coordinates. We shall see how to obtain quali-
tative and quantitative information about periodic, quasiperiodic, and recurrent dynamical systems.

3 Pipeline

For a fixed choice of parameters ` and d, we embed the time-series at hand into Rd.

Next we construct a simplicial complex approximating the topology of the embedded point cloud.
For instance, the Vietoris–Rips construction produces a filtered simplicial complex reflecting the
topology of the data at different scales. This is efficient even for very high embedding dimension d.
For more details, we refer the reader to [4].

From this we construct a persistence diagram for 1-dimensional cohomology. This distinguishes
high- and low-relevance topological features. The ‘gap’ between them is analogous to a signal-to-
noise ratio [3], which can be used to tune the delay embedding and other parameters.1

From the diagram we then choose one or several high-relevance persistent 1-cocycles and construct
their circular coordinates using harmonic smoothing (see [4]).

1There are many other ways to choose good parameters, including recent statistical methods [1, 6–9].
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Figure 3: The Lorentz attractor. To the left, the persistence diagram from the point cloud we com-
puted, with the chosen cocycles marked in large red dots. The resulting coordinates are indicated
left to right, with their corresponding coordinate functions on the time series top to bottom in the
right-most plot. The recurrent structure can be clearly seen in the pulse behaviour at the far right.

More technically, one can compute the cohomology cup product of the two 1-cocycles. A non-zero
cup product suggests this kind of quasiperiodic behaviour.

If the ratio ↵/� is rational, then the phase space is a circle embedded as a torus knot on the torus.
Such a phase space may manifest differently at different scales: at small scales it will appear to be
a circle (if the sampling is fine enough), and at larger scales it will appear as a torus. Persistent
topology is well suited for discovering this sort of multi-scale geometry.

4.3 Recurrent Systems

The archetypal example of chaotic recurrent behavior is the Lorentz attractor. Under a range of
parameters, the system traces out a ‘butterfly’ in observation space (Figure 3), travelling around
the two ‘wings’ in an aperiodic sequence. The sequence is not predictable in the long term, being
unstable under small perturbations. However this description of the behavior is qualitatively stable.

We can discover this very easily using our methods. We generate a point-cloud data set near the
attractor by following an arbitrary trajectory for a while. Persistent cohomology indicates two sig-
nificant cocycles, from which we construct two co-circles. The time series can now be viewed in
these circular coordinates.

The first observation is that the correlation plot of the two coordinates is clustered on a ‘cross’ in the
coordinate square, or more precisely a bouquet of two circles in the coordinate torus. This is quite
different from the quasiperiodic case, where the values taken by the two coordinates eventually fill
the entire torus. We can now track the motion of the trajectory against time. At most one coordinate
is ‘active’ at any given time, because the signal moves along at most one circle at a time. Each
complete journey around that circle appears as a ‘pulse’ in the time series in that coordinate. The
famous aperiodic behavior of the Lorentz system is immediately apparent from the time series in the
two coordinates.

We emphasize that this heuristic conclusion can be reached with essentially no prior knowledge
about the Lorentz system, and without direct reference to the butterfly.

5 Comments

Our approach to dynamical systems combines recent work in computational topology with well-
known tools from nonlinear systems. Our methods are very general, since they are topological in
nature. We have focused on the case of a time-series signal in one real dimension (or three, for the
Lorentz system). In fact, the signal may take values in any metric space, even one with no natural
coordinates of its own. The construction of the simplicial complex, its persistence and its co-circles
depends only on this metric information. If the signal exhibits any 1-dimensional cohomology (per-
haps after being boosted by a Takens embedding), then our method constructs circular coordinates
through which the signal becomes amenable to quantitative and qualitative analysis.
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More technically, one can compute the cohomology cup product of the two 1-cocycles. A non-zero
cup product suggests this kind of quasiperiodic behaviour.

If the ratio ↵/� is rational, then the phase space is a circle embedded as a torus knot on the torus.
Such a phase space may manifest differently at different scales: at small scales it will appear to be
a circle (if the sampling is fine enough), and at larger scales it will appear as a torus. Persistent
topology is well suited for discovering this sort of multi-scale geometry.

4.3 Recurrent Systems

The archetypal example of chaotic recurrent behavior is the Lorentz attractor. Under a range of
parameters, the system traces out a ‘butterfly’ in observation space (Figure 3), travelling around
the two ‘wings’ in an aperiodic sequence. The sequence is not predictable in the long term, being
unstable under small perturbations. However this description of the behavior is qualitatively stable.

We can discover this very easily using our methods. We generate a point-cloud data set near the
attractor by following an arbitrary trajectory for a while. Persistent cohomology indicates two sig-
nificant cocycles, from which we construct two co-circles. The time series can now be viewed in
these circular coordinates.

The first observation is that the correlation plot of the two coordinates is clustered on a ‘cross’ in the
coordinate square, or more precisely a bouquet of two circles in the coordinate torus. This is quite
different from the quasiperiodic case, where the values taken by the two coordinates eventually fill
the entire torus. We can now track the motion of the trajectory against time. At most one coordinate
is ‘active’ at any given time, because the signal moves along at most one circle at a time. Each
complete journey around that circle appears as a ‘pulse’ in the time series in that coordinate. The
famous aperiodic behavior of the Lorentz system is immediately apparent from the time series in the
two coordinates.

We emphasize that this heuristic conclusion can be reached with essentially no prior knowledge
about the Lorentz system, and without direct reference to the butterfly.

5 Comments

Our approach to dynamical systems combines recent work in computational topology with well-
known tools from nonlinear systems. Our methods are very general, since they are topological in
nature. We have focused on the case of a time-series signal in one real dimension (or three, for the
Lorentz system). In fact, the signal may take values in any metric space, even one with no natural
coordinates of its own. The construction of the simplicial complex, its persistence and its co-circles
depends only on this metric information. If the signal exhibits any 1-dimensional cohomology (per-
haps after being boosted by a Takens embedding), then our method constructs circular coordinates
through which the signal becomes amenable to quantitative and qualitative analysis.
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More technically, one can compute the cohomology cup product of the two 1-cocycles. A non-zero
cup product suggests this kind of quasiperiodic behaviour.

If the ratio ↵/� is rational, then the phase space is a circle embedded as a torus knot on the torus.
Such a phase space may manifest differently at different scales: at small scales it will appear to be
a circle (if the sampling is fine enough), and at larger scales it will appear as a torus. Persistent
topology is well suited for discovering this sort of multi-scale geometry.

4.3 Recurrent Systems

The archetypal example of chaotic recurrent behavior is the Lorentz attractor. Under a range of
parameters, the system traces out a ‘butterfly’ in observation space (Figure 3), travelling around
the two ‘wings’ in an aperiodic sequence. The sequence is not predictable in the long term, being
unstable under small perturbations. However this description of the behavior is qualitatively stable.

We can discover this very easily using our methods. We generate a point-cloud data set near the
attractor by following an arbitrary trajectory for a while. Persistent cohomology indicates two sig-
nificant cocycles, from which we construct two co-circles. The time series can now be viewed in
these circular coordinates.

The first observation is that the correlation plot of the two coordinates is clustered on a ‘cross’ in the
coordinate square, or more precisely a bouquet of two circles in the coordinate torus. This is quite
different from the quasiperiodic case, where the values taken by the two coordinates eventually fill
the entire torus. We can now track the motion of the trajectory against time. At most one coordinate
is ‘active’ at any given time, because the signal moves along at most one circle at a time. Each
complete journey around that circle appears as a ‘pulse’ in the time series in that coordinate. The
famous aperiodic behavior of the Lorentz system is immediately apparent from the time series in the
two coordinates.

We emphasize that this heuristic conclusion can be reached with essentially no prior knowledge
about the Lorentz system, and without direct reference to the butterfly.

5 Comments

Our approach to dynamical systems combines recent work in computational topology with well-
known tools from nonlinear systems. Our methods are very general, since they are topological in
nature. We have focused on the case of a time-series signal in one real dimension (or three, for the
Lorentz system). In fact, the signal may take values in any metric space, even one with no natural
coordinates of its own. The construction of the simplicial complex, its persistence and its co-circles
depends only on this metric information. If the signal exhibits any 1-dimensional cohomology (per-
haps after being boosted by a Takens embedding), then our method constructs circular coordinates
through which the signal becomes amenable to quantitative and qualitative analysis.
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Figure 1: The first step is to choose parameters and compute a time-delay embedding. The persis-
tence diagram of a distance filtration gives a natural measure of the quality of the embedding based
on which we can change the time-delay parameters.

The theorem states that almost every time-delay embedding of a 1-dimensional measurement (time-
series) can recover the underlying manifold and the dynamics of the system.

This is Step 1 of our contribution: using the time-delay embedding we lift the signal to d-
dimensions, the points of the lifted signal then clustering around some submanifold or other sub-
space of Rd. Takens’ theorem gives a necessary condition for this submanifold to recreate the full
phase space from an idealized continuous signal; but we are faced with finite noisy data, so we must
choose parameters a little more carefully for a ‘good’ embedding.

The original 1-dimensional signal is now a path in a higher-dimensional phase space. Periodic and
recurrent behavior is characterized by the path returning to itself, creating one or more loops, that is
to say topological circles. For example, the simplest periodic system is a sinusoid, which precisely
traces out a circle in phase space. The circle is not present in the 1-dimensional signal, but appears
upon boosting to 2 dimensions by a delay embedding {t 7! (sin(t), sin(t + a))}.

Step 2 is to use persistent cohomology to detect these circles, or rather co-circles: coordinate func-
tions from the phase space to the standard unit circle. A well-known result in algebraic topology
asserts that co-circles are classified (up to homotopy) by 1-dimensional cohomology. Due to space
constraints, we refer the reader to [4] for details of how this is done.

Since we are working with finite noisy data, we use topological persistence to identify the most
robust of these coordinates. Each co-circle is associated to a point in the persistence diagram whose
position indicates its robustness. As a useful side-effect, this can be used as a proxy for the quality
of the Takens embedding; we can tune the delay parameters to maximize robustness.

Step 3 is to observe the dynamics in the new circular coordinates. We shall see how to obtain quali-
tative and quantitative information about periodic, quasiperiodic, and recurrent dynamical systems.

3 Pipeline

For a fixed choice of parameters ` and d, we embed the time-series at hand into Rd.

Next we construct a simplicial complex approximating the topology of the embedded point cloud.
For instance, the Vietoris–Rips construction produces a filtered simplicial complex reflecting the
topology of the data at different scales. This is efficient even for very high embedding dimension d.
For more details, we refer the reader to [4].

From this we construct a persistence diagram for 1-dimensional cohomology. This distinguishes
high- and low-relevance topological features. The ‘gap’ between them is analogous to a signal-to-
noise ratio [3], which can be used to tune the delay embedding and other parameters.1

From the diagram we then choose one or several high-relevance persistent 1-cocycles and construct
their circular coordinates using harmonic smoothing (see [4]).

1There are many other ways to choose good parameters, including recent statistical methods [1, 6–9].
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From this we construct a persistence diagram for 1-dimensional cohomology. This distinguishes
high- and low-relevance topological features. The ‘gap’ between them is analogous to a signal-to-
noise ratio [3], which can be used to tune the delay embedding and other parameters.1
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their circular coordinates using harmonic smoothing (see [4]).

1There are many other ways to choose good parameters, including recent statistical methods [1, 6–9].
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Period estimation

Time series data:
Mean monthly air temperature at Nottingham Castle 1920-1939.

Source: O.D. Anderson (1976).

Persistent cohomology and circular coordinates
Periodic systems and period reconstruction

Anderson air temperature data

Vejdemo-Johansson, de Silva, and Skraba Persistent cohomology and period reconstruction
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Period estimation
Delay embedding (Takens 1981):

Convert 1-dimensional signal a(t) to n-dimensional signal f(t).

f(t) = [a(t), a(t+k), a(t+2k), ..., a(t+(n-1)k)].

Periodic signals remain periodic.

Circle topology may emerge in higher dimensions.

Persistent cohomology and circular coordinates
Periodic systems and period reconstruction

Anderson air temperature data

Vejdemo-Johansson, de Silva, and Skraba Persistent cohomology and period reconstruction

Persistent cohomology and circular coordinates
Periodic systems and period reconstruction

Anderson air temperature data

Vejdemo-Johansson, de Silva, and Skraba Persistent cohomology and period reconstruction

n=3
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Period estimation

Construct circular coordinate:

Persistent cohomology and circular coordinates
Periodic systems and period reconstruction

Anderson air temperature data

Vejdemo-Johansson, de Silva, and Skraba Persistent cohomology and period reconstruction
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Period estimation

Persistent cohomology and circular coordinates
Periodic systems and period reconstruction

Anderson air temperature data

Vejdemo-Johansson, de Silva, and Skraba Persistent cohomology and period reconstruction

new circular coordinate vs time

unrolled coordinate vs time
linear regression

Wednesday, July 17, 13



Vin de Silva, Pomona College

Topological Dimensionality ReductionACAT 2013, Bremen, Germany

17 July 2013

Lorenz attractor

Three-dimensional dynamical system.

Data generated by following an arbitrary trajectory.

Two cyclic coordinates found.

We can track any other trajectory in terms of these coordinates.
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Lorenz attractor
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Lorenz attractor

(Zoomed in and discretized)
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Quasi-periodic signal

Superposition of two signals:

If α is irrational, this converges to a dense sampling of a 2-
parameter signal defined on a torus:

Takens embedding to recover the torus.

f(t) = sin(t) + cos(↵t)

f(t) = sin(✓1) + cos(✓2) (✓1, ✓2) 2 (R/2⇡Z)⇥ (R/2⇡Z)
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Quasi-periodic signal
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input signal

two cocycles
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θ2

θ2 vs θ1
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Quasi-periodic signal

input signal

two cocycles

θ1

θ2

θ2 vs θ1

f(t) = sin(t) + exp(cos(

p
5t))
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