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Are π1X and π2X practical tools for computational topology?



Part I: The Fundamental Group
(with P. Dlotko, M. Mrozek)



Part I: The Fundamental Group
(with P. Dlotko, M. Mrozek)

Every protein has a representation as an amino acid chain.

Anfinsen’s Dogma
This representation determines the 3-D structure of the protein.



Protein Data Base: image of H. Sapiens 1xd3 data

Protein ends joined to form an embedding K : S1 −→ R
3.



Pure cubical complex representation of H. Sapiens 1xd3



GAP system for computatiponal algebra

G := π1(R
3 \ K ) ∼= 〈x , y | y−1x−1yxyx−1y−3x−1yxyx−1y−1x〉

gap> K:=ReadPDBfileAsPureCubicalComplex("1XD3.pdb");;

gap> G:=KnotGroup(K);;

#I there are 2 generators and 1 relator of length 14

gap> RelatorsOfFpGroup(G);

[ f2^-1*f1^-1*f2*f1*f2*f1^-1*f2^-3*f1^-1*f2*f1*f2*

f1^-1*f2^-1*f1 ]



What can we do with a group presentation?



What can we do with a group presentation?

EXAMPLE
For N ⊳ G , G/N ∼= C5 and Q = N/[[N,N],N] we could compute

H3(BQ,Z) = (Z3)
6 ⊕ Z192

gap> N:=LowIndexSubgroupsFpGroup(G,5)[4];;

gap> Q:=NilpotentQuotient(N,2);;

gap> GroupHomology(Q,3);

[ 3, 3, 3, 3, 3, 3, 192 ]



Inv(K ) = { H1(N,Z) : N ≤ G := π1(R
3 \ K ), |G : N| ≤ 5 }

distinguishes between all prime knots with ≤ 10 crossings.



Inv(K ) = { H1(N,Z) : N ≤ G := π1(R
3 \ K ), |G : N| ≤ 5 }

distinguishes between all prime knots with ≤ 10 crossings.

This invariant shows that the H. Sapiens 1xd3 knot is



A single thickening of the 1XD3 knot K changes its isotopy type to
an embedding K ′ : S1 ∨ S1 → R

3



A single thickening of the 1XD3 knot K changes its isotopy type to
an embedding K ′ : S1 ∨ S1 → R

3 and π1(R
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K’=



A single thickening of the 1XD3 knot K changes its isotopy type to
an embedding K ′ : S1 ∨ S1 → R

3 and π1(R
3 \ K ′) suggests:

K’=

A few extra thickenings contribute no further isotopy changes. So
perhaps the 1XD3 knot is actually a trefoil.



A representation of proteins (and other Euclidean data)

Choose a lattice L ⊆ R
n and determine

DL = {x ∈ R
n : ||x || ≤ ||x − v || ∀v ∈ L} .



Any finite set Λ ⊂ L determines an L-complex

X =
⋃

λ∈Λ

DL + λ

which we represent as a binary array

(aλ)λ∈Λ

aλ = 1 if λ ∈ Λ, aλ = 0 otherwise.



One advantage to permutahedral complexes

They are always topological manifolds, and so their complements
behaves nicely.

a b



Second advantage to permutahedral complexes

Permutahedron has at most 2n+1 − 2 neighbours (compared to
3n − 1 for the cube) so for n ≤ 4 we cheaply compute retracts

≃

e

because e ∈ S with |S | < 22
n+1−2.



A zig-zag homotopy retract

X
≃
→֒ X1

≃
←֓ X2

≃
→֒ X3 · · ·

≃
←֓ Y

gap> K:=ReadPDBfileAsPureCubicalComplex("1XD3.pdb");;

gap> X:=ComplementOfPureCubicalComplex(K);;

gap> Size(X);

14692851

gap> Y:=ZigZagContractedPureCubicalComplex(X);;

gap> Size(Y);

74649



Computing fundamental groups of finite regular CW-spaces A
discrete vector field on a regular

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) + 1 and s lies in the boundary of t

21 3 4 1

14321

5
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7 7

6

5

Torus:

16 vertices

32 edges

16 faces

The critical cells are those not involved in arrows.



A discrete vector field on a regular CW-space X is a collection of
arrows s → t where

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) + 1 and s lies in the boundary of t
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A discrete vector field on a regular CW-space X is a collection of
arrows s → t where

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) + 1 and s lies in the boundary of t

21 3 4 1

14321

5

6

7 7

6

5

Torus:

1 critical vertex

2 critical edges

1 critical face

The critical cells are those not involved in arrows.



A discrete vector field on a regular CW-space X is a collection of
arrows s → t where

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) + 1 and s lies in the boundary of t

21 3 4 1

14321

5

6

7 7

6

5

π1(Torus) =

〈x , y | xyx−1y−1〉

The critical cells are those not involved in arrows.



Algorithm produces a presentation for the fundamental group of a
regular CW-space with admissible discrete vector field.

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) + 1 and s lies in the boundary of t

21 3 4 1

14321

5

6

7 7

6

5
Torus:

1 critical vertex

2 critical edges

1 critical face

non-admissible

vector field

The critical cells are those not involved in arrows.



Computing low-index groups of a finitely presented group G

Index n subgroup H ≤ G corresponds to a homomorphism

G → Sn

into the group of permutations of X = {gH | g ∈ G}.
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Only finitely many such homomorphisms.



Computing low-index groups of a finitely presented group G

Index n subgroup H ≤ G corresponds to a homomorphism

G → Sn

into the group of permutations of X = {gH | g ∈ G}.

Only finitely many such homomorphisms.

Index n subgroups H ≤ G are finitely presented (Reidemeister-
Schreier).



Multiplication in a nilpotent group G

Use power-commutator presentations

〈x , y , z | x2 = 1, y2 = z , z2 = 1, x−1yxy−1 = z〉

and GAP or Magma’s fast rewrite rules for such presentations.



Computing homology Hn(BG ,Z) of a nilpotent group G

Implement theoretical descriptions of BG for abelian G.



Computing homology Hn(BG ,Z) of a nilpotent group G

Implement theoretical descriptions of BG for abelian G.

For G of class 2
[G ,G ]→ G → G/[G ,G ]

construct BG from spaces B([G ,G ]) and B(G/[G ,G ]) by
homological perturbation techniques involving contracting discrete
vector fields on universal covers.



Computing homology Hn(BG ,Z) of a nilpotent group G

Implement theoretical descriptions of BG for abelian G.

For G of class 2
[G ,G ]→ G → G/[G ,G ]

construct BG from spaces B([G ,G ]) and B(G/[G ,G ]) by
homological perturbation techniques involving contracting discrete
vector fields on universal covers.

For G of nilpotency class c use recursion on

γcG → G → G/γcG .



An application

H4(BM24,Z) = 0

gap> GroupHomology(MathieuGroup(24),4);

[ ]



An application

H4(BM24,Z) = 0

gap> GroupHomology(MathieuGroup(24),4);

[ ]

H3(BM24,U(1)) = Z12



Part II: The Second Homotopy Group
(joint work with Le Van Luyen)



For spaces Y ⊂ X and D2 = {x ∈ R
2 : ||x || ≤ 1} define

π2(X ,Y ) = {f : D2 → X : f (S1) ⊂ Y }/homotopy



For spaces Y ⊂ X and D2 = {x ∈ R
2 : ||x || ≤ 1} define

π2(X ,Y ) = {f : D2 → X : f (S1) ⊂ Y }/homotopy

There is a “restriction” homomorphism

∂ : π2(X ,Y )→ π1(Y )

and g ∈ π1(Y ) acts canonically on f ∈ π2(X ,Y ).

f

g



Theorem (JHC Whitehead): There is an exact sequence of groups

π2(Y )→ π2(X )→ π2(X ,Y )
∂
−→ π1(Y )→ π1(X )

in which ∂ is a crossed module:

A crossed module is a group homomorphism ∂ : M → G with
action (g ,m) 7→g m statisfying

◮ ∂(gm) = g ∂(m) g−1

◮
∂mm′ = mm′m−1



Theorem (JHC Whitehead): There is an exact sequence of groups

π2(Y )→ π2(X )→ π2(X ,Y )
∂
−→ π1(Y )→ π1(X )

in which ∂ is a crossed module:

A crossed module is a group homomorphism ∂ : M → G with
action (g ,m) 7→g m statisfying

◮ ∂(gm) = g ∂(m) g−1

◮
∂mm′ = mm′m−1

We define

π1(∂) = G/image ∂ π2(∂) = ker ∂ .



Taking Y = X 1 we get Whitehead’s functor

Ho(regular CW− spaces) −→ Σ−1(crossed modules)

which is faithful on homotopy types X with πnX = 0 for n 6= 1, 2.

Σ−1 is localization with respect to “quasi-isomorphisms”



Taking Y = X 1 we get Whitehead’s functor

Ho(regular CW− spaces) −→ Σ−1(crossed modules)

which is faithful on homotopy types X with πnX = 0 for n 6= 1, 2.

Σ−1 is localization with respect to “quasi-isomorphisms”

Let
B(M

∂
−→ G )

denote a CW-space with πnX = 0 for n 6= 1, 2 that maps to ∂.



Two algebraic examples of crossed modules

∂ : M → Aut(M),m 7→ {x 7→ mxm−1}

for any group M. π1(∂) = Out(M), π2(∂) = Z (M).

∂ : M →֒ G

for any normal subgroup M ≤ G . π1(∂) = G/M, π2(∂) = 0.



Computing Hn( B(M
∂
→ G ) , Z) in GAP

H5( B(D32 → Aut(D32)) , Z) ∼= (Z2)
5 ⊕ Z8

gap> M:=DihedralGroup(64);;

gap> C:=AutomorphismGroupAsCatOneGroup(M);;

gap> Size(C); #Size(M) * Size(Aut(M))

32768

gap> Homology(C,5);

[ 2, 2, 2, 2, 2, 8 ]

gap>



A morphism of crossed modules is a commutative diagram

M
φ2

//

∂

��

M ′

∂′

��

G
φ1

// G ′

with φ1, φ2 group homomorphisms satisfying

φ2(
gm) =(φ1g) φ2(m)



A morphism of crossed modules is a commutative diagram

M
φ2

//

∂

��

M ′

∂′

��

G
φ1

// G ′

with φ1, φ2 group homomorphisms satisfying

φ2(
gm) =(φ1g) φ2(m)

It is a quasi-isomorphism if it induces isomorphisms

πn(∂) ∼= πn(∂
′) , n = 1, 2.



A morphism of crossed modules is a commutative diagram

M
φ2

//

∂

��

M ′

∂′

��

G
φ1

// G ′

with φ1, φ2 group homomorphisms satisfying

φ2(
gm) =(φ1g) φ2(m)

It is a quasi-isomorphism if it induces isomorphisms

πn(∂) ∼= πn(∂
′) , n = 1, 2.

Two crossed modules ∂, ∂′′ are quasi-isomorphic if there exists a
sequence of quasi-isomorphisms:

∂ → ∂1 ← ∂2 → · · · ← ∂k → ∂′′



Application of homology computation

There are 49487365422 different groups (i.e. homotopy 1-types) of
order 1024.

Question: Define the order of ∂ : M → G to be |M||G |. How many
quasi-isomorphism types of crossed module of order 16 are there?
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There are 49487365422 different groups (i.e. homotopy 1-types) of
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Question: Define the order of ∂ : M → G to be |M||G |. How many
quasi-isomorphism types of crossed module of order 16 are there?

Partial answer (Alp & Wensley): There are 62 isomorphism types
of crossed module of order 16.

E & Le: By finding explicit quasi-isomorphisms, there are at most
51 quasi-isomorphism types.



Application of homology computation

There are 49487365422 different groups (i.e. homotopy 1-types) of
order 1024.

Question: Define the order of ∂ : M → G to be |M||G |. How many
quasi-isomorphism types of crossed module of order 16 are there?

Partial answer (Alp & Wensley): There are 62 isomorphism types
of crossed module of order 16.

E & Le: By finding explicit quasi-isomorphisms, there are at most
51 quasi-isomorphism types. The invariants

π1(∂), π2(∂), H2(∂,Z), H3(∂,Z)

establish at least 49 quasi-isomorphism types of crossed modules of
order 16.



Computing the homology of M
∂
−→ G

1. The cellular chain complex C∗(B(∂)) has an algebraic
description using the language of simplicial sets.

2. By the Homological Perturbation Lemma and discrete vector
fields we need only compute a much smaller homotopic chain
complex C∗ ≃ C∗(B(∂)).

3. Coreduction can be applied to obtain an even smaller chain
complex D∗ ≃ C∗.



A curiosity about coreduction
The crossed module

∂ : Z2 → 0

yields a homotopy 2-type B = B(∂) with

π2(B) = Z2, πk(B) = 0 for k 6= 2.



A curiosity about coreduction
The crossed module

∂ : Z2 → 0

yields a homotopy 2-type B = B(∂) with

π2(B) = Z2, πk(B) = 0 for k 6= 2.

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;

gap> C:=ChainComplex(B);;

gap> List([0..11],CK!.dimension);

[ 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]



A curiosity about coreduction
The crossed module

∂ : Z2 → 0

yields a homotopy 2-type B = B(∂) with

π2(B) = Z2, πk(B) = 0 for k 6= 2.

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;

gap> C:=ChainComplex(B);;

gap> List([0..11],CK!.dimension);

[ 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]

gap> D:=CoreducedChainComplex(C);;

gap> List([0..10],D!.dimension);

[ 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ]



N : (crossed modules) −→ (simplicial groups)

Given ∂ : M → G we consider the category

A = M ⋉ G

s : A→ A, (m, g) 7→ (1, g)
t : A→ A, (m, g) 7→ (1, ∂(m) g)
◦ : A×G A→ A, ((m, g), (m′, g ′) 7→ (m, (∂m)−1g ′)



N : (crossed modules) −→ (simplicial groups)

Given ∂ : M → G we consider the category

A = M ⋉ G

s : A→ A, (m, g) 7→ (1, g)
t : A→ A, (m, g) 7→ (1, ∂(m) g)
◦ : A×G A→ A, ((m, g), (m′, g ′) 7→ (m, (∂m)−1g ′)

s, t, ◦ are group homomorphisms and A is a category internal to
the category of groups.

The nerve N (A) is thus a simplicial group.



B : (crossed modules)
N

// (simplicial groups)

N

��

(bisimplicial sets)
∆

// (simplicial sets)



B : (crossed modules)
N

// (simplicial groups)

N

��

(bisimplicial sets)
∆

// (simplicial sets)

F : (sets) // (free abelian groups)



B : (crossed modules)
N

// (simplicial groups)

N

��

(bisimplicial sets)
∆

// (simplicial sets)

F : (sets) // (free abelian groups)

C∗(B(∂ : M → G )) is the total complex of the bicomplex:

�� �� ��
// FN2N2(A) //

��

FN2N1(A)

��

//// FN2N0(A)

��
// FN1N2(A) //

��

FN1N1(A)

��

//// FN1N0(A)

��
// FN0N2(A) // FN0N1(A) //// FN0N0(A)



The jth column FN∗(Nj(A)) is the bar complex for the group
Nj(A).



The jth column FN∗(Nj(A)) is the bar complex for the group
Nj(A).

We could replace each column by

R
Nj(A)
∗ ⊗ZNj (A) Z

where R
Nj(A)
∗ is an arbitrary free ZNj(A)-resolution of Z.



The jth column FN∗(Nj(A)) is the bar complex for the group
Nj(A).

We could replace each column by

R
Nj(A)
∗ ⊗ZNj (A) Z

where R
Nj(A)
∗ is an arbitrary free ZNj(A)-resolution of Z. But the

horizontally induced maps won’t square to zero if the resolutions
aren’t functorial.



The jth column FN∗(Nj(A)) is the bar complex for the group
Nj(A).

We could replace each column by

R
Nj(A)
∗ ⊗ZNj (A) Z

where R
Nj(A)
∗ is an arbitrary free ZNj(A)-resolution of Z. But the

horizontally induced maps won’t square to zero if the resolutions
aren’t functorial.

Homological Perturbation Lemma solves this problem by providing
a filtered complex

R
N∗(A)
∗ ⊗ZN∗(A) Z



A homotopy equivalence data

(L, d)

p
←

i
→ (M, d), h (∗)

consists of chain complexes L,M, quasi-isomorphisms i , p and a
homotopy ip − 1 = dh + hd . A perturbation on (∗) is a
homomorphism ǫ : M → M of degree −1 such that (d + ǫ)2 = 0.

PERTURBATION LEMMA: If A = (1− ǫh)−1ǫ exists then

(L, d ′)

p′

←

i ′
→ (M, d + ǫ), h′ (∗∗)

is a homotopy equivalence data where

i ′ = i + hAi , p′ = p + pAh, h′ = h + hAh, d ′ = d + pAi .

M. Crainic, ”On the perturbation lemma, and deformations”, 2004



�� �� ��
0
// FN2N2(A)

0
//

��

FN2N1(A)

��

0
//0
// FN2N0(A)

��
0
// FN1N2(A)

0
//

��

FN1N1(A)

��

0
//0
// FN1N0(A)

��

(M, d)

0
// FN0N2(A)

0
// FN0N1(A)

0
//0
// FN0N0(A)

�� �� ��
0
// R
N2(A)
2 ⊗ Z

0
//

��

R
N1(A)
2 ⊗ Z

��

0
//0
// R
N0(A)
2 ⊗ Z

��
0
// R
N2(A)
1 ⊗ Z

0
//

��

R
N1(A)
1 ⊗ Z

��

0
//0
// R
N0(A)
1 ⊗ Z

��

(L, d)

0
// R
N2(A)
0 ⊗ Z

0
// R
N1(A)
0 ⊗ Z

0
//0
// R
N0(A)
0 ⊗ Z



�� �� ��
// FN2N2(A) //

��

FN2N1(A)

��

//// FN2N0(A)

��
// FN1N2(A) //

��

FN1N1(A)

��

//// FN1N0(A)

��

(M, d + ǫ)

// FN0N2(A) // FN0N1(A) //// FN0N0(A)

�� �� ��

33
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h // R
N2(A)
2 ⊗ Z

//

��

33
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f
f

f

R
N1(A)
2 ⊗ Z

��

//// R
N0(A)
2 ⊗ Z

��

44
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i // R

N2(A)
1 ⊗ Z

//

��

33
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

R
N1(A)
1 ⊗ Z

��

//// R
N0(A)
1 ⊗ Z

��

(L, d ′)
44

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i // R
N2(A)
0 ⊗ Z

//

33
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

R
N1(A)
0 ⊗ Z

// // R
N0(A)
0 ⊗ Z



Persistent homology of crossed modules

B = B(∂ : M → G )
πi = πiB

· · · →֒ [[π2, π1], π1] →֒ [π2, π1] →֒ π2

→ · · · π1/[[[π1, π1], π1]→ π1/[π1, π1]



Persistent homology of crossed modules

B = B(∂ : M → G )
πi = πiB

· · · →֒ [[π2, π1], π1] →֒ [π2, π1] →֒ π2

→ · · · π1/[[[π1, π1], π1]→ π1/[π1, π1]

induce a sequence of homotopy 2-types

→ B−2 → B−1 → B → B1 → B2 → · · ·

whose degree k homology is a homotopy invariant bar code for B .



H3(B∗,Z2) barcode for B = B(C32 → Aut(C32))



H3(B∗,Z2) barcode for B = B(C32 → Aut(C32))

THANK YOU


