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Are m1 X and mp X practical tools for computational topology?



Part I: The Fundamental Group
(with P. Dlotko, M. Mrozek)



Part I: The Fundamental Group
(with P. Dlotko, M. Mrozek)

Every protein has a representation as an amino acid chain.

Anfinsen’'s Dogma
This representation determines the 3-D structure of the protein.




Protein Data Base: image of H. Sapiens 1xd3 data

Protein ends joined to form an embedding K: S —; R3.



Pure cubical complex representation of H. Sapiens 1xd3




GAP system for computatiponal algebra

1

G :=m(R¥\ K) = (x,y |y Ix Lyxyx Ly Bx T hyxyx Tty Tix)

gap> K:=ReadPDBfileAsPureCubicalComplex("1XD3.pdb");;

gap> G:=KnotGroup(K);;
#I there are 2 generators and 1 relator of length 14

gap> Relators0fFpGroup(G) ;
[ £27-1*f17-1*f2*f1*f2+f1 - 1+f27-3xf 1" —1*f2*xf 1+ f2*
f17-1x£27-1%f1 ]




What can we do with a group presentation?



What can we do with a group presentation?

EXAMPLE
For N G, G/N = G5 and Q = N/[[N, N], N] we could compute

H3(BQ,Z) = (Z3)° & Z1o>

gap> N:=LowIndexSubgroupsFpGroup(G,5) [4];;
gap> Q:=NilpotentQuotient(N,2);;

gap> GroupHomology(Q,3);
[ 3 3, 3,3, 3,3, 192]




Inv(K) ={ Hi(N,Z) : N<G:=m(R¥\K), |G:N| <5}

distinguishes between all prime knots with < 10 crossings.



Inv(K) ={ Hi(N,Z) : N<G:=m(R¥\K), |G:N| <5}
distinguishes between all prime knots with < 10 crossings.

This invariant shows that the H. Sapiens 1xd3 knot is

i



A single thickening of the 1XD3 knot K changes its isotopy type to
an embedding K’: S v S — R3



A single thickening of the 1XD3 knot K changes its isotopy type to
an embedding K’: S' v S' — R3 and 71 (R3\ K’) suggests:

i



A single thickening of the 1XD3 knot K changes its isotopy type to
an embedding K’: S' v S' — R3 and 71 (R3\ K’) suggests:

Sp

Ballf v

Sq

K'=

]

A few extra thickenings contribute no further isotopy changes. So
perhaps the 1XD3 knot is actually a trefoil.

SV



A representation of proteins (and other Euclidean data)

Choose a lattice L C R" and determine

D={xeR" . ||x|]|<||x—v||VveL}.




Any finite set A C L determines an L-complex

X=|JDL+A
AEN

which we represent as a binary array

(ax)ren

ay=1if A €A, ay, =0 otherwise.



One advantage to permutahedral complexes

They are always topological manifolds, and so their complements
behaves nicely.




Second advantage to permutahedral complexes

Permutahedron has at most 2™ — 2 neighbours (compared to
3" — 1 for the cube) so for n < 4 we cheaply compute retracts

because e € S with |§| < 22" -2,



A zig-zag homotopy retract

XSX1 X0 Xz 0 Y

gap> K:=ReadPDBfileAsPureCubicalComplex("1XD3.pdb");;
gap> X:=ComplementOfPureCubicalComplex(K) ;;

gap> Size(X);
14692851

gap> Y:=ZigZagContractedPureCubicalComplex(X);;

gap> Size(Y);
74649




Computing fundamental groups of finite regular CW-spaces

1 2 3 4 1
5 5
Torus:
] . 16 vertices
32 edges
16 faces
7 7




A discrete vector field on a regular CW-space X is a collection of
arrows s — t where

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) 4+ 1 and s lies in the boundary of t

1 2 3 4 1
<« —> >
5 1\ 5
<~ —> —> Torus:
] . 16 vertices
\L 32 edges
< — —> 16 faces
\ll 7
< — —




A discrete vector field on a regular CW-space X is a collection of
arrows s — t where

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) 4+ 1 and s lies in the boundary of t

1 2 3 4 1
<« —> >
5 1\ 5
<~ —> —> Torus:
1 critical vertex
6 6 ...
\L 2 critical edges
< — —> 1 critical face
7 ' \ll 7
< — —
1 2 3 4 1

The critical cells are those not involved in arrows.



A discrete vector field on a regular CW-space X is a collection of
arrows s — t where

s, t are cells and any cell is involved in at most one arrow

dim(t) = dim(s) 4+ 1 and s lies in the boundary of t

1 2 3 4 1
5 < T — — 5
<~ — —
m1(Torus) =
6 <~ \l/ — — 6
1,1
- . (y | xyx =ty ™)
7 <~ \l/ — — 7
<~ — —

-
N}
w
I

1
The critical cells are those not involved in arrows.



Algorithm produces a presentation for the fundamental group of a
regular CW-space with admissible discrete vector field.

1 2 3 4 1
< ‘l' —> >
5 \L > Torus:
<« —> —> 1 critical vertex
] . 2 critical edges
\L 1 critical face
< —> —> non-admissible
;e \L , vector field
u L L



Computing low-index groups of a finitely presented group G

Index n subgroup H < G corresponds to a homomorphism
G— S,

into the group of permutations of X = {gH | g € G}.



Computing low-index groups of a finitely presented group G

Index n subgroup H < G corresponds to a homomorphism
G— S,

into the group of permutations of X = {gH | g € G}.

Only finitely many such homomorphisms.



Computing low-index groups of a finitely presented group G

Index n subgroup H < G corresponds to a homomorphism
G— S,

into the group of permutations of X = {gH | g € G}.

Only finitely many such homomorphisms.

Index n subgroups H < G are finitely presented (Reidemeister-
Schreier).



Multiplication in a nilpotent group G
Use power-commutator presentations

Gy, z | =1y =222 =1,xyy ' =2)

and GAP or Magma's fast rewrite rules for such presentations.



Computing homology H,(BG,Z) of a nilpotent group G

Implement theoretical descriptions of BG for abelian G.



Computing homology H,(BG,Z) of a nilpotent group G

Implement theoretical descriptions of BG for abelian G.

For G of class 2
[G,G] = G — G/[G,G]

construct BG from spaces B([G, G]) and B(G/[G, G]) by
homological perturbation techniques involving contracting discrete
vector fields on universal covers.



Computing homology H,(BG,Z) of a nilpotent group G

Implement theoretical descriptions of BG for abelian G.

For G of class 2
[G,G] = G — G/[G,G]

construct BG from spaces B([G, G]) and B(G/[G, G]) by
homological perturbation techniques involving contracting discrete
vector fields on universal covers.

For G of nilpotency class ¢ use recursion on

Y9G = G — G/v.G .



An application

Ha(BMa4,Z) = 0

gap> GroupHomology (MathieuGroup(24) ,4) ;
[]




An application

Ha(BMa4,Z) = 0

gap> GroupHomology (MathieuGroup(24) ,4) ;
[]

H3(BMp4,U(1)) = Z1o




Part 1I: The Second Homotopy Group
(joint work with Le Van Luyen)



For spaces Y C X and D? = {x € R?: ||x|| < 1} define

(X, Y)={f: D> = X : f(S') C Y}/homotopy




For spaces Y C X and D? = {x € R?: ||x|| < 1} define

(X, Y)={f: D> = X : f(S') C Y}/homotopy

O~

There is a “restriction” homomorphism

0: 7'1'2()(7 Y) — 7T1(Y)

and g € m1(Y) acts canonically on f € (X, Y).



Theorem (JHC Whitehead): There is an exact sequence of groups
(YY) = m(X) = ma(X, Y) -L 1 (Y) = m(X)

in which 0 is a crossed module:

A crossed module is a group homomorphism 9: M — G with
action (g, m) —#& m statisfying

> 0(Em) = gd(m)g™*

> amm/ —mm m—l



Theorem (JHC Whitehead): There is an exact sequence of groups
(YY) = m(X) = ma(X, Y) -L 1 (Y) = m(X)

in which 0 is a crossed module:

A crossed module is a group homomorphism 9: M — G with
action (g, m) —#& m statisfying

> 0(Em) = gd(m)g™*

> amm/ —mm m—l

We define

m1(0) = G/image 0 m2(0) = ker 0 .



Taking Y = X! we get Whitehead's functor

Ho(regular CW — spaces) — ¥~ *(crossed modules)

which is faithful on homotopy types X with 7,X =0 for n # 1,2.

¥ ! is localization with respect to “quasi-isomorphisms”



Taking Y = X! we get Whitehead's functor

Ho(regular CW — spaces) — ¥~ *(crossed modules)

which is faithful on homotopy types X with 7,X =0 for n # 1,2.

¥ ! is localization with respect to “quasi-isomorphisms”

Let
B(M -Z G)

denote a CW-space with 7,X = 0 for n # 1,2 that maps to 0.



Two algebraic examples of crossed modules

d: M — Aut(M),m — {x — mxm~'}
for any group M. m1(9) = Out(M), m2(0) = Z(M).

0:M— G
for any normal subgroup M < G. 71(9) = G/M, m(9) = 0.



Computing Ho( B(M % G) , Z) in GAP

Hs( B(D3p — Aut(Ds2)) , 7) = (Z,)° & Zg

gap> M:=DihedralGroup(64);;

gap> C:=AutomorphismGroupAsCatOneGroup(M);;
gap> Size(C); #Size(M) * Size(Aut(M))

32768

gap> Homology(C,5) ;
(2,2, 2,2, 2, 8]
gap>




A morphism of crossed modules is a commutative diagram

with ¢1, ¢2 group homomorphisms satisfying

$2(8m) _(¢g) ¢o(m)



A morphism of crossed modules is a commutative diagram

with ¢1, ¢2 group homomorphisms satisfying
$2(8m) =1918) gp(m)

It is a quasi-isomorphism if it induces isomorphisms

m(0) 2 ma(d), n=1,2.



A morphism of crossed modules is a commutative diagram

with ¢1, ¢2 group homomorphisms satisfying
Po(8m) =918) ¢,(m)
It is a quasi-isomorphism if it induces isomorphisms
m(0) 2 ma(d), n=1,2.

Two crossed modules 9, &" are quasi-isomorphic if there exists a
sequence of quasi-isomorphisms:

=01+ 0=+ O — 0"



Application of homology computation

There are 49487365422 different groups (i.e. homotopy 1-types) of
order 1024.

Question: Define the order of 9: M — G to be |[M||G|. How many
quasi-isomorphism types of crossed module of order 16 are there?
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Partial answer (Alp & Wensley): There are 62 isomorphism types
of crossed module of order 16.



Application of homology computation

There are 49487365422 different groups (i.e. homotopy 1-types) of
order 1024.

Question: Define the order of 9: M — G to be |[M||G|. How many
quasi-isomorphism types of crossed module of order 16 are there?

Partial answer (Alp & Wensley): There are 62 isomorphism types
of crossed module of order 16.

E & Le: By finding explicit quasi-isomorphisms, there are at most
51 quasi-isomorphism types.



Application of homology computation

There are 49487365422 different groups (i.e. homotopy 1-types) of
order 1024.

Question: Define the order of 9: M — G to be |[M||G|. How many
quasi-isomorphism types of crossed module of order 16 are there?

Partial answer (Alp & Wensley): There are 62 isomorphism types
of crossed module of order 16.

E & Le: By finding explicit quasi-isomorphisms, there are at most
51 quasi-isomorphism types. The invariants

7r1(8), 7T2(8), H2(8,Z), H3(8,Z)

establish at least 49 quasi-isomorphism types of crossed modules of
order 16.



Computing the homology of M 96

1. The cellular chain complex C,(B(9)) has an algebraic
description using the language of simplicial sets.

2. By the Homological Perturbation Lemma and discrete vector
fields we need only compute a much smaller homotopic chain
complex C, >~ C,(B(9)).

3. Coreduction can be applied to obtain an even smaller chain
complex D, ~ C,.



A curiosity about coreduction
The crossed module
0: Zz —0

yields a homotopy 2-type B = B(0) with

7T2(B) = Zz, 7Tk(B) =0 for k 75 2.



A curiosity about coreduction
The crossed module
0: Zz —0

yields a homotopy 2-type B = B(0) with

7T2(B) = Zz, 7Tk(B) =0 for k 75 2.

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;
gap> C:=ChainComplex(B);;

gap> List([0..11],CK!.dimension);

(1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]




A curiosity about coreduction
The crossed module

0: Zz —0
yields a homotopy 2-type B = B(0) with

7T2(B) = Zz, 7Tk(B) =0 for k 75 2.

gap> B:=EilenbergMacLaneComplex(CyclicGroup(2),2,11);;
gap> C:=ChainComplex(B);;

gap> List([0..11],CK!.dimension);

(1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ]

gap> D:=CoreducedChainComplex(C);;
gap> List([0..10],D!.dimension);
[1, O, 1, 1, 2, 3, 5, 8, 13, 21, 34 ]




N : (crossed modules) — (simplicial groups)

Given 0: M — G we consider the category

A=MxG
s: A=A, (m,g) — (1, g)
t:A— A, (m,g) — (1,0(m)g)

o AxgA—= A, ((mg),(m,g")— (m, (am)_lg/)



N : (crossed modules) — (simplicial groups)

Given 0: M — G we consider the category

A=MxG
s: A=A, (m,g) — (1, g)
t:A— A, (m,g) — (1,0(m)g)

o: AxgA—= A, ((mg),(m,g")— (m,(Om)

s, t, o are group homomorphisms and A is a category internal to
the category of groups.

The nerve N(A) is thus a simplicial group.



B: (crossed modules) N (simplicial groups)

|v

(bisimplicial sets) A (simplicial sets)



B: (crossed modules) N (simplicial groups)

|v
(bisimplicial sets) A (simplicial sets)

F: (sets) — (free abelian groups)



B: (crossed modules) N (simplicial groups)

|v
(bisimplicial sets) A (simplicial sets)

F: (sets) — (free abelian groups)

C.(B(9: M — G)) is the total complex of the bicomplex:

—_— FN2N2(A) —_— FN2N1(A) —_— FN2N0(A)

—_— FN]_N2(A) —_— FNlNl(A) —_— FNlNo(A)

—_— FNON2(A) —— FNoNl(A) —— FNoNo(A)



The jth column FA,(Nj(A)) is the bar complex for the group
Nj(A).



The jth column FA,(Nj(A)) is the bar complex for the group
Nj(A).

We could replace each column by

Ni(A
RO @an ) 2

where Rivj(A) is an arbitrary free ZN/j(A)-resolution of Z.



The jth column FA,(Nj(A)) is the bar complex for the group
Nj(A).

We could replace each column by

Ni(A
RO @an ) 2

(A) . . .
where Rivj( ) is an arbitrary free ZNj(A)-resolution of Z. But the
horizontally induced maps won't square to zero if the resolutions
aren’t functorial.



The jth column FA,(Nj(A)) is the bar complex for the group
Nj(A).

We could replace each column by

Ni(A
RO @an ) 2

Ni(A) . . .
where R, ™) s an arbitrary free ZNj(A)-resolution of Z. But the
horizontally induced maps won't square to zero if the resolutions
aren’t functorial.

Homological Perturbation Lemma solves this problem by providing

a filtered complex

N
R QzN..(A) L



A homotopy equivalence data

2

(L, d) 5 (M, d), h (x)

consists of chain complexes L, M, quasi-isomorphisms i, p and a
homotopy ip — 1 = dh + hd. A perturbation on (x) is a
homomorphism e: M — M of degree —1 such that (d + €)% = 0.

PERTURBATION LEMMA: If A = (1 — eh)~Le exists then

/
7

(Ld") 5 (M, d +¢), K (%)
is a homotopy equivalence data where

i"=i+hAi, p=p+pAh, W =h+hAh, d =d+pAi .

M. Crainic, "On the perturbation lemma, and deformations”, 2004



ﬁo
FNoN»(A) —2L= FANNG (A) —L> FANG(A)

%0
FNN>(A) —L= FAINL(A) —2> FAING(A)

%0
FNoN2(A) —L FAGN1(A) —2 FNoN(A)

/\/2(/4

N

® Z —0> Ré\/l(A

N

%R

0 No(A
®Z—>R20( )®Z

R 2 Z N Z

® Z

0 S NL(A A A
%PZ()QW 0 N

(M, d)

(L, d)



—_— FNQNQ(A) —_— FN2N1(A) —_— FN2N0(A)

—_— FNlNQ(A) —_— FNlNl(A) —_— FNlNo(A)

—_— FNoNQ(A) —— FNoNl(A) —— FNoNo(A)

(M,d +¢)

(L, d")



Persistent homology of crossed modules

B=B(0: M— G)
m = mB

T [[7T277T1]77T1] — [7T277T1] — T2

— ooy /[[[71, m1], 1] = w1 /[, T



Persistent homology of crossed modules

B=B(0: M— G)
;i =m;B

s [[71'2,71'1],7‘('1] — [7‘('2,7'('1] — T
— -y /[[[my, m], m] = m /[,
induce a sequence of homotopy 2-types

—+B,—+B1—-+B—-B —-B,—---

whose degree k homology is a homotopy invariant bar code for B.



Hs(B.,7Z3) barcode for B = B(C3; — Aut(C32))




Hs(B.,7Z3) barcode for B = B(C3; — Aut(C32))

THANK YOU



