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Motivation

Real object Models

e How accurately does rank invariant comparison on discrete models
approximate that on continuous objects?
e To which extent can data resolution be coarsened in order to

, méaintain a certain error threshold on rank invariants comparison?
O



Outline

e Multidimensional persistence of a filtration
o sub-level set filtrations
o simplicial complex filtrations
e From discrete to continuous filtrations:
o an obstacle: topological aliasing
o a way round: axis-wise linear interpolation
e From continuous to discrete:
o stable comparison of multi-D persistence
e Application:

o a procedure to predetermine the model precision required to reach a
given error threshold.
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1-D vs. multi-D Persistence

1-D persistence captures the topology of a one-parameter filtration.

mass

o o o. © o‘ ©
®o %o @ e @ °e @

e O ) OO .OOO
® X1 ® X ® X3 @ X

o o .? o‘.? o..?.
Q Qx Q.Ox C%.Ox ‘O.. X

4 of 15

darkness




1-D vs. multi-D Persistence

Multi-D persistence captures the topology of a family of spaces
filtered along multiple geometric dimensions.
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Filtrations

e Sublevelset filtrations: Any continuous function
f=(f,...,f) : X = R¥ induces sub-level sets:

Xa_ﬂ Y(~w,a]), a=(ay,...,a5) € R~

Setting
a=(a;) X B=(B) iff a; < B; for every i

we get a k-parameter filtration of X by sub-level sets:
a = B implies Xz C Xg.

e Discrete filtrations: Given a simplicial complex .#" and a function
¢ ¥(K)— Rk, for any a € R¥ let

Ha={0€ X |p(v) < a for all vertices v < g}.
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Rank invariant

For a filtration . = {Xq }4cg« ON a triangulable subspace of some R¢,
p7 {(a.B) eR“ xR |a < B} =N,
pz(a,B) =dimimH,( Xy — Xg).
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Continuous vs discrete setting

e Sub-level set filtrations are those for which stability results hold:
V£, f': X — Rk continuous functions, D(pr,pr) < ||f — '[|e.
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Continuous vs discrete setting

e Sub-level set filtrations are those for which stability results hold:
V£, f': X — Rk continuous functions, D(pr,pr) < ||f — '[|e.

e Discrete filtrations are those actually used in computations:

Laser Projector CCD scanner

Stable comparison of rank invariants obtained from discrete data?
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From discrete to continuous filtrations

Question: How to extend ¢ : #(K) — R¥ to a continuous function
K — R¥ so that its sub-level set filtration coincides with {Kg}ycrt?
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From discrete to continuous filtrations

Question: How to extend ¢ : #(K) — R¥ to a continuous function
K — R¥ so that its sub-level set filtration coincides with {Kg}ycrt?
Answer: 1-D persistence: use linear interpolation [Morozov, 2008]
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From discrete to continuous filtrations

Question: How to extend ¢ : #(K) — R¥ to a continuous function
K — R¥ so that its sub-level set filtration coincides with {Kg}ycrt?
Answer: Multi-D persistence:

linear interpolation yields topological aliasing
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Topological Aliasing: numerical experiments

N N

Original | Linear int. |

% Diff

cat0 vs. cat0O-tranl-1

H; | 0.046150 | 0.040576 | -13.737185

Hp | 0.225394 | 0.207266 | -8.746249
catO-tran1-2 vs. cat0-tran2-1

H; | 0.034314 | 0.029188 | -17.562012

Hy | 0.208451 | 0.204511 | -1.926547
cat0-tran2-1 vs. cat0-tran2-2

H; | 0.045545 | 0.037061 | -22.891989

Hp | 0.212733 | 0.208097 | -2.227807
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Axis-wise linear interpolation

e Given any 0 € %, set (o) = max{@(v)|v is a vertex of 0}.

e Use induction to define ¢ ': K — R* on 0 and a point wy € 0 s.t.

o Forallxea, ¢ '(x) <9 (ws)=pu(0);
o ¢ is linear on any line segment [wg,y] with y € do .
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Theorem

For any a € R, Ky is a strong deformation retract of Ky =<a-
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Bridging stability from continuous to discrete
persistence

e X and Y homeomorphic triangulable spaces (real objects);

o f: X —RKg:Y — R¥ continuous functions (real measurements);

o %" and &' simplicial complexes with |7/ =K, |.#"| =L
(approximated object);

o §:K—RK @:L— R continuous functions (approximated
measurements);

Theorem: If two homeomorphisms & : K — X, { : L — Y exist s.t.
1§ —follle<e/4, |P—golfo<e/4
then, for any sufficiently fine subdivision %" of #” and & of %/,
D (pr.Pg) — D (P, y)| <€,
¢V (H)—=RE ¥ (L) — RX being restrictions of ¢ and .
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Sketch of the proof

* 30 >0s.t. max{diamo |c€ ¥ or 0 € L} <6 =

ID (05, Pp) — D (Py, Py ) < €/2.
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Sketch of the proof

* 30 >0s.t. max{diamo |c€ ¥ or 0 € L} <6 =
ID (kg pg) —D(Pg, Py)| < /2.

[ p¢ :pd)-\, pw:pw-\
e max{diamo|oe€ ¥ or0€ ¥} <0 =

ID(pg.Pp) —D(pg, py)| < €/2.

D(pr.pg) < D(pr,Proe) +D(Proz,P5)+D(Ps.Pp)
+ D(p¢7pg05)+D(ngZ’pg)
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Applications to model precision concerns

e Aim: Calculate the model precision required to reach a given error
threshold
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set of triangulations of T with 22V simplices (varying N) we obtain
the function @; y by sampling f; at the vertices of the triangulations.
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Applications to model precision concerns

e Aim: Calculate the model precision required to reach a given error

threshold
e Method: demonstrated using the following example

For a dataset of 5000 functions f; : T — R? on the torus T, given a
set of triangulations of T with 22N simplices (varying N) we obtain
the function @; y by sampling f; at the vertices of the triangulations.

We can estimate the error caused by coarsening the model by
computing || ny — fil|oo:

N 4 5
U 0.3841 | 0.2995 | 0.1785 | 0.0977 | 0.0503 | 0.0254
o 0.060 | 0.0541 | 0.0335 | 0.0179 | 0.0092 | 0.0046

H+o | 0.4444 | 0.3536 | 0.2120 | 0.1157 | 0.0596 | 0.0300
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Applications to model precision concerns

By the Stability Theorem we get a bound of the error on the rank
invariants caused by model coarsening
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Conclusions

We have shown that in multidimensional persistence:

e Passing from discrete to continuous setting, a peculiar
phenomenon occurs: topological aliasing

e Topological aliasing is removed by using axis-wise linear
interpolation

e Stability of rank invariants passes from continuous to discrete
filtrations

e Stability for discrete filtrations yields a method for bounding the
error caused by model coarsening

THANK YOU FOR YOUR ATTENTION!
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