Persistent homotopy types

of noisy samples of graphs in the plane

Vitaliy Kurlin, http://kurlin.org
Durham University, UK


http://kurlin.org

Noisy point clouds around graphs
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Problem : given only a blue point cloud C C R?
around a green planar graph I ¢ R?, detect a
likely structure of T (e.g. the homotopy type of I)
under some conditions when C is close to I'.



Related work on noisy data

Metric graph reconstruction from noisy data.
Aanjaneya, Chazal, Chen, Glisse, Guibas,
Morozov. Int J Comp Geometry Appl, 2011.

Input: a large metric graph Y (the shortest path
distance) approximating an unknown graph X.

Output: a small metric graph X close to X.

Proved: X is almost isometric to X if Y is close
enough to X and edges of X are not too short.



Complexes associated to a cloud

Def : for a cloud C ¢ R™ and ¢ > 0, the Cech
complex Ch(e) has vertices from C, simplices
spanned by vertices v, ..., vk if "< B.(v;) # 0.

The Vietoris-Rips complex VR(e) has simplices
spanned by vy, ..., v if distances d(v;, v;) <e.
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1-skeleton depending on ¢

1-dimensional skeleton X(¢) of Ch and VR for
the cloud of 5 points C C R? on the left picture.
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It can be hard to manually find a good value of ¢.



Capturing a homotopy type

Nerve lemma for a point cloud C ¢ R™ says: its
abstract Cech complex Ch(e) has the homotopy
type of the e-offset C° = U,ccB.(a) C R™.

The complex VR(¢) is built from the graph X(e).
Also Ch(e) € VR(2¢) c Ch(2¢) for any ¢ > 0.

Ch(e), VR(¢) have high-dimensional simplices
even for C C R2, witness complexes are simpler.



Parameter-less reconstruction

Our aim is to reconstruct I' from a close sample
without user-defined parameters when possible.
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Simplest case: reconstructing isolated vertices
is equivalent to clustering a given cloud C C R?,



Persistence-based clustering

Persistence-based clustering in Riemannian
manifolds. Chazal, Guibas, Oudot, Skraba.
Proceedings Sympos Comp Geometry 2011.

ToMATo: Topological Mode Analysis Tool.

Input: neighborhood graph (Rips with fixed ),
density estimator f, threshold 7 for peaks of f.

Proved: there is a range of 7 when
#clusters= #peaks with a high probability.



Single edge clustering

C c R?, 1-dimensional skeleton X(¢) evolves:

e

persistent components

Persistent connect. components of X(¢) living
over a long interval of ¢ are likely clusters of C.



Dendrogram of clustering

Def : a hierarchical clustering produces nested
partitions represented by the dendrogram:
each internal node is a cluster merged from
smaller 2+ clusters at the node’s children.
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Choosing a distance threshold

Multivariate data analysis using persistence-
based filtering and signatures. Rieck, Mara,
Leitte. IEEE Trans Vis Comp Graphics 2012.

The distance threshold ¢ for clusters is from
the dendrogram of the single link clustering.

Input: kK = #neighbors in a density estimator.

No guarantees given when #clusters is correct.



Persistent clusters

Def: in a general dendrogram, clusters merge at
n—1crit. heights0=hy < hy <--- < hyp_1. A
partition with the longest life span s = h; — h;_+
is persistent. If i = 1, take 1 cluster instead of n.
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Associated probablllty
For s = h; — h;_1, the probability P =

hn—1
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1st result: 1 cluster, P = 27 ~ 35%.
2nd result: 2 clusters, P = z\f 2 ~ 30%.
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3 clusters: e ~ 20%. 4 clusters: eV 15%.




Well-disconnected sets

Def: for a triangulable set S C R™, consider
the minimum distance dse,(S) between any
connected components of S. Let dgon(S) = min
distance when Jdco-offset of S is connected.
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The set S is well-disconnected if dgon < 2dsep.



Finding persistent clusters

Claim: if a cloud C is e-close to aset S C R™
and deon(S) + 8¢ < 2ds6p(S), then the persistent
clusters of C correctly detect components of S.
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Sharp condition on persistence

Example: S - {O, 1,2} C R, dsep - 1 - dcon.

Take e-close cloud C = {—¢,¢,1 —¢,2 + ¢}.
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Crit. heights: hy =2¢, hp =1 —2¢, hy = 1 + 2¢.

To get 3 clusters {£e} U {1 —c} U {2+ ¢}, we
need hp — hy =1—4s > h3 — h, =4¢,s0¢ < L.



Distance function of a cloud

Def : for a compact set (e.g. a cloud) C C R™,
define d¢ : R — R, d¢(a) is the distance from
a € R™ to the closest point from the set C ¢ R™

A sublevel set d;'[0, <] is the union of balls with
the radius £ > 0 and centers at the points of C.



The distance between clouds

Def : the distance between clouds C, C’' c R? is
d(C, ') = [|dc — do/|| = sup |dc(a) — dc(a)].
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Geometrically, d(C, C') is the smalleste > 0
such that C' C UaceB.(a) and C C U B.(a).



Persistent homology theory

Def : for a cloud C c R?, complexes {VR(¢)}
with inclusions VR(e) C VR(¢') for any e < ¢’
lead to the persistence space { Hx(VR(¢))} with
coefficients in a field F and induced linear maps
wk(e,€") - H((VR(e)) — Hk(VR(e")) for e < &'.

f: M — R, take sublevels M(s) = f~1(—o0,¢].
Let0 < ey < --- < ep be all critical values when
V(ei—0) — V(ej+ ) aren’t isomorphisms, small
b.Lethh<er<tl<er< - <lpmi1<em<ln



Persistence diagrams

Def : the persistence diagram of {V(¢)} is the
set of (¢j,¢;) € R? for all i < j with multiplicities
iy = BI=1,7) =B, ))+ B0, j=1)=p(i=1,j=1),
where (i, ) = rank (image (V(t;) — V(%)) ).
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Distance between diagrams

Let P be {(x, x) € R?} U {a finite set of points}.

Def : dg(P, Q) = inf, sup,.p |a@ — v(a)| over all
1-1 maps v : P — Q is the bottleneck distance.

2\2 @ bottleneck

birth moment

0\ >




Stability of persistence
22 @ bottleneck

0 birth moment

Stability of Persistence Diagrams. Edelsbrunner,
Cohen-Steiner, Harer. Discr. Comp. Geometry
2007. Proved: dg(D(f), D(9))| < ||f — g||c-

Any e-perturbation of a point cloud C C R?
deforms the persistence diagram by at most «.




Stable persistent clusters

All components of S C R™ live from 0. Any noise
of a cloud C can appear only in yellow areas.
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Correct #clusters in the range [2¢, dsep(S) — 2¢],
longest when 2e < dggp — 4 > Aeon — sep + 4<.




Delaunay triangulation and MST

For a cloud C c R?, a Delaunay triangulation
DT has no point of C inside the circumcircle of
any triangle. A minimum spanning tree MST
has vertices at C and minimum total length.
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How to find persistent clusters

Fact: for a cloud C of n points, MST c DT can
be found in O(nlog n)-time using O(n) space.
Idea: critical heights in single link clustering are
the lengths of n — 1 edges in MST(C), which

can be sorted in O(nlog n) time to find the
longest life span and a few alternatives.

So MST(C) contains all 0-dim persistence of
X(g), no need to try many threshold values «.



Critical radii for 5;

Def: for a triangulable set S C R™, consider
renan(S) = mine when p1(S°) starts changing.
Let rii,(S) = mine when 51(S°) = 0 after that.
reon(C) = mine when X(e) becomes connected.
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Existence of persistent ;

Claim: if a cloud C is s-close to a set S ¢ R™,
rtrlv(S)+rcon(C)+3€ S 2rchan(8) Z 4rcon(C)+2<€,
then 51(S) = 51(Chy(e)) with longest life span.



31 with the longest life span

Any noise of C can appear only in yellow areas.
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Reeb graph of a height function

Def: for f: X — R, the Reeb graph R¢(X) is the
quotient X/ ~, where a ~ b < a, b are in the
same connected component of f~1(c).

Data skeletonization via Reeb graphs.
Ge, Safa, Belkin, Wang. NIPS 2011.

Proved: if a complex K ~ deform retracts to
e-close graph G and 4= < min edge length of G,
there is a 1-1 map between loops of R¢(K), G.



Persistent 3; of Reeb graphs

Difficulty: for complexes K; C --- C K, Reeb
graphs R¢(K;) aren’t a filtration, even zigzag.

Reeb Graphs: Approximation and Persistence.
Dey, Wang. Discrete Comp Geometry 2012.

Proved: all persistent 54 of R:(K;) can be found
in O(n*) time, n = size of the 2-skeleton of K.



Plane shadow of Rips complex

Vietoris-Rips complexes of planar point sets.
Chambers, de Silva, Erickson, Ghrist.
Discrete Computational Geometry 2010.

Proved: for a point cloud C C R?, the projection
to the shadow: VR — S(VR) C R? respects 7.

For a cloud of n points, can we find all persistent
By of the shadows S(VR(¢)) in O(nlog n) time?



Future work and problems

Topology Analyzer Java applet on graph
reconstruction at http://kurlin.org

reconstructing topological types of graphs
detecting homotopy types of noisy graphs
by using plane shadows of Rips complexes
statistics of persistent clusters or Betti
numbers for randomly generated clouds
automatic choice of a density threshold to
find persistent clusters with long life spans
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