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Noisy point clouds around graphs

Problem : given only a blue point cloud C ⊂ R2

around a green planar graph Γ ⊂ R2, detect a
likely structure of Γ (e.g. the homotopy type of Γ)
under some conditions when C is close to Γ.



Related work on noisy data
Metric graph reconstruction from noisy data.
Aanjaneya, Chazal, Chen, Glisse, Guibas,
Morozov. Int J Comp Geometry Appl, 2011.

Input: a large metric graph Y (the shortest path
distance) approximating an unknown graph X .

Output: a small metric graph X̂ close to X .

Proved: X̂ is almost isometric to X if Y is close
enough to X and edges of X are not too short.



Complexes associated to a cloud
Def : for a cloud C ⊂ Rm and ε > 0, the Čech
complex Čh(ε) has vertices from C, simplices
spanned by vertices v1, . . . , vk if ∩k

i=1Bε(vi) 6= ∅.

The Vietoris-Rips complex VR(ε) has simplices
spanned by v1, . . . , vk if distances d(vi , vj) ≤ ε.



1-skeleton depending on ε

1-dimensional skeleton X (ε) of Čh and VR for
the cloud of 5 points C ⊂ R2 on the left picture.

It can be hard to manually find a good value of ε.



Capturing a homotopy type

Nerve lemma for a point cloud C ⊂ Rm says: its
abstract Čech complex Čh(ε) has the homotopy
type of the ε-offset Cε = ∪a∈CBε(a) ⊂ Rm.

The complex VR(ε) is built from the graph X (ε).
Also Čh(ε) ⊂ VR(2ε) ⊂ Čh(2ε) for any ε > 0.

Čh(ε),VR(ε) have high-dimensional simplices
even for C ⊂ R2, witness complexes are simpler.



Parameter-less reconstruction
Our aim is to reconstruct Γ from a close sample
without user-defined parameters when possible.

Simplest case: reconstructing isolated vertices
is equivalent to clustering a given cloud C ⊂ R2.



Persistence-based clustering
Persistence-based clustering in Riemannian
manifolds. Chazal, Guibas, Oudot, Skraba.
Proceedings Sympos Comp Geometry 2011.

ToMATo: Topological Mode Analysis Tool.

Input: neighborhood graph (Rips with fixed ε),
density estimator f , threshold τ for peaks of f .

Proved: there is a range of τ when
#clusters= #peaks with a high probability.



Single edge clustering
C ⊂ R2, 1-dimensional skeleton X (ε) evolves:

Persistent connect. components of X (ε) living
over a long interval of ε are likely clusters of C.



Dendrogram of clustering
Def : a hierarchical clustering produces nested
partitions represented by the dendrogram:
each internal node is a cluster merged from
smaller 2+ clusters at the node’s children.



Choosing a distance threshold

Multivariate data analysis using persistence-
based filtering and signatures. Rieck, Mara,
Leitte. IEEE Trans Vis Comp Graphics 2012.

The distance threshold ε for clusters is from
the dendrogram of the single link clustering.

Input: k = #neighbors in a density estimator.

No guarantees given when #clusters is correct.



Persistent clusters
Def: in a general dendrogram, clusters merge at
n − 1 crit. heights 0 = h0 < h1 < · · · < hn−1. A
partition with the longest life span s = hi − hi−1

is persistent. If i = 1, take 1 cluster instead of n.



Associated probability
For s = hi − hi−1, the probability P =

s
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.
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Well-disconnected sets

Def: for a triangulable set S ⊂ Rm, consider
the minimum distance dsep(S) between any
connected components of S. Let dcon(S) = min
distance when 1

2dcon-offset of S is connected.

The set S is well-disconnected if dcon < 2dsep.



Finding persistent clusters
Claim: if a cloud C is ε-close to a set S ⊂ Rm

and dcon(S) + 8ε ≤ 2dsep(S), then the persistent
clusters of C correctly detect components of S.



Sharp condition on persistence

Example: S = {0,1,2} ⊂ R, dsep = 1 = dcon.

Take ε-close cloud C = {−ε, ε,1− ε,2 + ε}.

Crit. heights: h1 = 2ε, h2 = 1− 2ε, h3 = 1 + 2ε.

To get 3 clusters {±ε} ∪ {1− ε} ∪ {2 + ε}, we
need h2 − h1 = 1− 4ε > h3 − h2 = 4ε, so ε < 1

8.



Distance function of a cloud

Def : for a compact set (e.g. a cloud) C ⊂ Rm,
define dC : Rm → R, dC(a) is the distance from
a ∈ Rm to the closest point from the set C ⊂ Rm

A sublevel set d−1
C [0, ε] is the union of balls with

the radius ε > 0 and centers at the points of C.



The distance between clouds
Def : the distance between clouds C,C ′ ⊂ R2 is
d(C,C ′) = ||dC − dC′|| = sup

a∈R2
|dC(a)− dC′(a)|.

Geometrically, d(C,C ′) is the smallest ε > 0
such that C ′ ⊂ ∪a∈CBε(a) and C ⊂ ∪a∈C′Bε(a).



Persistent homology theory
Def : for a cloud C ⊂ R2, complexes {VR(ε)}
with inclusions VR(ε) ⊂ VR(ε′) for any ε < ε′

lead to the persistence space {Hk(VR(ε))} with
coefficients in a field F and induced linear maps
ϕk(ε, ε′) : Hk(VR(ε))→ Hk(VR(ε′)) for ε < ε′.

f : M → R, take sublevels M(ε) = f−1(−∞, ε].
Let 0 < ε1 < · · · < εm be all critical values when
V (εi − δ)→ V (εi + δ) aren’t isomorphisms, small
δ. Let t0 < ε1 < t1 < ε2 < · · · < tm−1 < εm < tm.



Persistence diagrams
Def : the persistence diagram of {V (ε)} is the
set of (εi , εj) ∈ R2 for all i < j with multiplicities
µij = β(i−1, j)−β(i , j)+β(i , j−1)−β(i−1, j−1),

where β(i , j) = rank (image (V (ti)→ V (tj) ) ).



Distance between diagrams

Let P be {(x , x) ∈ R2} ∪ {a finite set of points}.

Def : dB(P,Q) = infγ supa∈P |a− γ(a)| over all
1-1 maps γ : P → Q is the bottleneck distance.



Stability of persistence

Stability of Persistence Diagrams. Edelsbrunner,
Cohen-Steiner, Harer. Discr. Comp. Geometry
2007. Proved: dB(D(f ),D(g))| ≤ ||f − g||∞.

Any ε-perturbation of a point cloud C ⊂ R2

deforms the persistence diagram by at most ε.



Stable persistent clusters
All components of S ⊂ Rm live from 0. Any noise
of a cloud C can appear only in yellow areas.

Correct #clusters in the range [2ε,dsep(S)− 2ε],
longest when 2ε ≤ dsep − 4ε ≥ dcon − dsep + 4ε.



Delaunay triangulation and MST

For a cloud C ⊂ R2, a Delaunay triangulation
DT has no point of C inside the circumcircle of
any triangle. A minimum spanning tree MST
has vertices at C and minimum total length.



How to find persistent clusters

Fact: for a cloud C of n points, MST ⊂ DT can
be found in O(n log n)-time using O(n) space.

Idea: critical heights in single link clustering are
the lengths of n − 1 edges in MST (C), which
can be sorted in O(n log n) time to find the
longest life span and a few alternatives.

So MST (C) contains all 0-dim persistence of
X (ε), no need to try many threshold values ε.



Critical radii for β1
Def: for a triangulable set S ⊂ Rm, consider
rchan(S) = min ε when β1(Sε) starts changing.
Let rtriv (S) = min ε when β1(Sε) = 0 after that.
rcon(C) = min ε when X (ε) becomes connected.



Existence of persistent β1

Claim: if a cloud C is ε-close to a set S ⊂ Rm,
rtriv (S)+ rcon(C)+3ε ≤ 2rchan(S) ≥ 4rcon(C)+2ε,
then β1(S) = β1(Čh2(ε)) with longest life span.



β1 with the longest life span

Any noise of C can appear only in yellow areas.

Correct β1 in [rcon(C), rchan(S)− ε], longest life
span if rcon ≤ rchan − ε− rcon ≥ rtriv − rchan + 2ε.



Reeb graph of a height function

Def: for f : X → R, the Reeb graph Rf (X ) is the
quotient X/ ∼, where a ∼ b ⇔ a,b are in the
same connected component of f−1(c).

Data skeletonization via Reeb graphs.
Ge, Safa, Belkin, Wang. NIPS 2011.

Proved: if a complex K ∼ deform retracts to
ε-close graph G and 4ε < min edge length of G,
there is a 1-1 map between loops of Rf (K ),G.



Persistent β1 of Reeb graphs

Difficulty: for complexes K1 ⊂ · · · ⊂ Km, Reeb
graphs Rf (Ki) aren’t a filtration, even zigzag.

Reeb Graphs: Approximation and Persistence.
Dey, Wang. Discrete Comp Geometry 2012.

Proved: all persistent β1 of Rf (Ki) can be found
in O(n4) time, n = size of the 2-skeleton of Km.



Plane shadow of Rips complex

Vietoris-Rips complexes of planar point sets.
Chambers, de Silva, Erickson, Ghrist.
Discrete Computational Geometry 2010.

Proved: for a point cloud C ⊂ R2, the projection
to the shadow: VR→ S(VR) ⊂ R2 respects π1.

For a cloud of n points, can we find all persistent
β1 of the shadows S(VR(ε)) in O(n log n) time?



Future work and problems

• Topology Analyzer Java applet on graph
reconstruction at http://kurlin.org

• reconstructing topological types of graphs

• detecting homotopy types of noisy graphs
by using plane shadows of Rips complexes

• statistics of persistent clusters or Betti
numbers for randomly generated clouds

• automatic choice of a density threshold to
find persistent clusters with long life spans

http://kurlin.org

