Persistent homotopy types of noisy samples of graphs in the plane

> Vitaliy Kurlin, http://kurlin.org Durham University, UK

Problem : given only a blue point cloud $C \subset \mathbb{R}^2$ around a green planar graph $\Gamma \subset \mathbb{R}^2$, detect a likely *structure* of Γ (e.g. the homotopy type of Γ) under some conditions when *C* is close to Γ .

Related work on noisy data

Metric graph reconstruction from noisy data. Aanjaneya, Chazal, Chen, Glisse, Guibas, Morozov. Int J Comp Geometry Appl, 2011.

Input: a large metric graph Y (the shortest path distance) approximating an unknown graph X.

Output: a small metric graph \hat{X} close to X.

Proved: \hat{X} is almost isometric to X if Y is close enough to X and edges of X are not too short.

Complexes associated to a cloud

Def : for a cloud $C \subset \mathbb{R}^m$ and $\varepsilon > 0$, the Čech complex Čh(ε) has vertices from *C*, simplices spanned by vertices v_1, \ldots, v_k if $\bigcap_{i=1}^k B_{\varepsilon}(v_i) \neq \emptyset$.

The Vietoris-Rips complex $VR(\varepsilon)$ has simplices spanned by v_1, \ldots, v_k if distances $d(v_i, v_j) \le \varepsilon$.

1-skeleton depending on ε

1-dimensional skeleton $X(\varepsilon)$ of Čh and VR for the cloud of 5 points $C \subset \mathbb{R}^2$ on the left picture.

It can be hard to manually find a good value of ε .

Capturing a homotopy type

Nerve lemma for a point cloud $C \subset \mathbb{R}^m$ says: its abstract Čech complex $\check{Ch}(\varepsilon)$ has the *homotopy type* of the ε -offset $C^{\varepsilon} = \bigcup_{a \in C} B_{\varepsilon}(a) \subset \mathbb{R}^m$.

The complex $VR(\varepsilon)$ is built from the graph $X(\varepsilon)$. Also $\check{C}h(\varepsilon) \subset VR(2\varepsilon) \subset \check{C}h(2\varepsilon)$ for any $\varepsilon > 0$.

 $\check{C}h(\varepsilon)$, $VR(\varepsilon)$ have high-dimensional simplices even for $\mathcal{C} \subset \mathbb{R}^2$, witness complexes are simpler.

Parameter-less reconstruction

Our aim is to reconstruct Γ from a close sample without user-defined parameters when possible.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → りへで

Persistence-based clustering

Persistence-based clustering in Riemannian manifolds. Chazal, Guibas, Oudot, Skraba. Proceedings Sympos Comp Geometry 2011.

ToMATo: Topological Mode Analysis Tool.

Input: neighborhood graph (Rips with fixed ε), density estimator *f*, threshold τ for peaks of *f*.

Proved: there is a range of τ when #clusters= #peaks with a high probability.

(日) (日) (日) (日) (日) (日) (日)

Single edge clustering

 $C \subset \mathbb{R}^2$, 1-dimensional skeleton $X(\varepsilon)$ evolves:

Persistent connect. components of $X(\varepsilon)$ living over a long interval of ε are likely *clusters* of *C*.

Dendrogram of clustering

Def : a hierarchical clustering produces nested partitions represented by the dendrogram: each internal node is a cluster merged from smaller 2+ clusters at the node's children.

Choosing a distance threshold

Multivariate data analysis using persistencebased filtering and signatures. Rieck, Mara, Leitte. IEEE Trans Vis Comp Graphics 2012.

The distance threshold ε for clusters is from the dendrogram of the single link clustering.

Input: k = #neighbors in a density estimator.

No guarantees given when # clusters is correct.

Persistent clusters

Def: in a general dendrogram, clusters merge at n - 1 crit. heights $0 = h_0 < h_1 < \cdots < h_{n-1}$. A partition with the *longest life span* $s = h_i - h_{i-1}$ is persistent. If i = 1, take 1 cluster instead of n.

Well-disconnected sets

Def: for a triangulable set $S \subset \mathbb{R}^m$, consider the minimum distance $d_{sep}(S)$ between any connected components of *S*. Let $d_{con}(S) = \min$ distance when $\frac{1}{2}d_{con}$ -offset of *S* is connected.

1 set S

$$d_{con} = 1 = d_{sep}$$

0 1 set S
 $d_{con} = 2$ $d_{sep} = 1$
0 2

The set *S* is well-disconnected if $d_{con} < 2d_{sep}$.

Finding persistent clusters

Claim: if a cloud *C* is ε -close to a set $S \subset \mathbb{R}^m$ and $d_{con}(S) + 8\varepsilon \leq 2d_{sep}(S)$, then the persistent clusters of *C* correctly detect components of *S*.

Sharp condition on persistence

Example: $S = \{0, 1, 2\} \subset \mathbb{R}$, $d_{sep} = 1 = d_{con}$.

Take ε -close cloud $C = \{-\varepsilon, \varepsilon, 1 - \varepsilon, 2 + \varepsilon\}$. 0 cloud C 1 2 - ε ε 1- ε set S 2+ ε

Crit. heights: $h_1 = 2\varepsilon$, $h_2 = 1 - 2\varepsilon$, $h_3 = 1 + 2\varepsilon$.

To get 3 clusters $\{\pm\varepsilon\} \cup \{1-\varepsilon\} \cup \{2+\varepsilon\}$, we need $h_2 - h_1 = 1 - 4\varepsilon > h_3 - h_2 = 4\varepsilon$, so $\varepsilon < \frac{1}{8}$.

Distance function of a cloud

Def : for a compact set (e.g. a cloud) $C \subset \mathbb{R}^m$, define $d_C : \mathbb{R}^m \to \mathbb{R}$, $d_C(a)$ is the distance from $a \in \mathbb{R}^m$ to the closest point from the set $C \subset \mathbb{R}^m$

A sublevel set $d_C^{-1}[0, \varepsilon]$ is the union of balls with the radius $\varepsilon > 0$ and centers at the points of *C*.

The distance between clouds

Def : the distance between clouds $C, C' \subset \mathbb{R}^2$ is $d(C, C') = ||d_C - d_{C'}|| = \sup_{a \in \mathbb{R}^2} |d_C(a) - d_{C'}(a)|.$

Geometrically, d(C, C') is the smallest $\varepsilon > 0$ such that $C' \subset \bigcup_{a \in C} B_{\varepsilon}(a)$ and $C \subset \bigcup_{a \in C'} B_{\varepsilon}(a)$.

・ コット (雪) (小田) (コット 日)

ε

Persistent homology theory

Def: for a cloud $C \subset \mathbb{R}^2$, complexes {VR(ε)} with inclusions VR(ε) \subset VR(ε ') for any $\varepsilon < \varepsilon$ ' lead to the persistence space { $H_k(VR(\varepsilon))$ } with coefficients in a field *F* and induced linear maps $\varphi_k(\varepsilon, \varepsilon') : H_k(VR(\varepsilon)) \to H_k(VR(\varepsilon'))$ for $\varepsilon < \varepsilon'$.

 $f: M \to \mathbb{R}$, take sublevels $M(\varepsilon) = f^{-1}(-\infty, \varepsilon]$. Let $0 < \varepsilon_1 < \cdots < \varepsilon_m$ be all *critical* values when $V(\varepsilon_i - \delta) \to V(\varepsilon_i + \delta)$ aren't isomorphisms, small δ . Let $t_0 < \varepsilon_1 < t_1 < \varepsilon_2 < \cdots < t_{m-1} < \varepsilon_m < t_m$.

Persistence diagrams

Def : the persistence diagram of $\{V(\varepsilon)\}$ is the set of $(\varepsilon_i, \varepsilon_j) \in \mathbb{R}^2$ for all i < j with multiplicities $\mu_{ij} = \beta(i-1,j) - \beta(i,j) + \beta(i,j-1) - \beta(i-1,j-1),$ where $\beta(i,j) = \operatorname{rank}(\operatorname{image}(V(t_i) \to V(t_j))).$

Distance between diagrams

Let *P* be $\{(x, x) \in \mathbb{R}^2\} \cup \{a \text{ finite set of points}\}.$

Def : $d_B(P, Q) = \inf_{\gamma} \sup_{a \in P} |a - \gamma(a)|$ over all 1-1 maps $\gamma : P \to Q$ is the bottleneck distance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stability of Persistence Diagrams. Edelsbrunner, Cohen-Steiner, Harer. Discr. Comp. Geometry 2007. **Proved**: $d_B(D(f), D(g))| \le ||f - g||_{\infty}$.

Any ε -perturbation of a point cloud $C \subset \mathbb{R}^2$ deforms the persistence diagram by at most ε .

Stable persistent clusters

All components of $S \subset \mathbb{R}^m$ live from 0. Any noise of a cloud *C* can appear only in yellow areas.

Correct #clusters in the range $[2\varepsilon, d_{sep}(S) - 2\varepsilon]$, longest when $2\varepsilon \leq d_{sep} - 4\varepsilon \geq d_{con} - d_{sep} + 4\varepsilon$.

Delaunay triangulation and MST

For a cloud $C \subset \mathbb{R}^2$, a Delaunay triangulation DT has no point of C inside the circumcircle of any triangle. A minimum spanning tree MST has vertices at C and minimum total length. (0,5)(2,3)MST(C DT(C cloud C (2,1 (0,0) (1,0)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

How to find persistent clusters

Fact: for a cloud *C* of *n* points, $MST \subset DT$ can be found in $O(n \log n)$ -time using O(n) space.

Idea: critical heights in single link clustering are the lengths of n - 1 edges in MST(C), which can be sorted in $O(n \log n)$ time to find the longest life span and a few alternatives.

So MST(C) contains all 0-dim persistence of $X(\varepsilon)$, no need to try many threshold values ε .

Critical radii for β_1

Def: for a triangulable set $S \subset \mathbb{R}^m$, consider $r_{chan}(S) = \min \varepsilon$ when $\beta_1(S^{\varepsilon})$ starts changing. Let $r_{triv}(S) = \min \varepsilon$ when $\beta_1(S^{\varepsilon}) = 0$ after that. $r_{con}(C) = \min \varepsilon$ when $X(\varepsilon)$ becomes connected. curve S $2r_{con}(C)$ 2r_{chan}(S $2r_{triv}(S)$ cloud C

Claim: if a cloud *C* is ε -close to a set $S \subset \mathbb{R}^m$, $r_{triv}(S) + r_{con}(C) + 3\varepsilon \leq 2r_{chan}(S) \geq 4r_{con}(C) + 2\varepsilon$, then $\beta_1(S) = \beta_1(\check{C}h_2(\varepsilon))$ with longest life span.

β_1 with the longest life span

Any noise of C can appear only in yellow areas.

Reeb graph of a height function

Def: for $f : X \to \mathbb{R}$, the Reeb graph $R_f(X)$ is the quotient X / \sim , where $a \sim b \Leftrightarrow a, b$ are in the same connected component of $f^{-1}(c)$.

Data skeletonization via Reeb graphs. Ge, Safa, Belkin, Wang. NIPS 2011.

Proved: if a complex $K \sim$ deform retracts to ε -close graph G and $4\varepsilon <$ min edge length of G, there is a 1-1 map between loops of $R_f(K)$, G.

Persistent β_1 of Reeb graphs

Difficulty: for complexes $K_1 \subset \cdots \subset K_m$, Reeb graphs $R_f(K_i)$ aren't a filtration, even zigzag.

Reeb Graphs: Approximation and Persistence. Dey, Wang. Discrete Comp Geometry 2012.

Proved: all persistent β_1 of $R_f(K_i)$ can be found in $O(n^4)$ time, n = size of the 2-skeleton of K_m .

Plane shadow of Rips complex

Vietoris-Rips complexes of planar point sets. Chambers, de Silva, Erickson, Ghrist. Discrete Computational Geometry 2010.

Proved: for a point cloud $C \subset \mathbb{R}^2$, the projection to the shadow: $VR \rightarrow S(VR) \subset \mathbb{R}^2$ respects π_1 .

For a cloud of *n* points, can we find all persistent β_1 of the shadows $S(VR(\varepsilon))$ in $O(n \log n)$ time?

Future work and problems

- Topology Analyzer Java applet on graph reconstruction at http://kurlin.org
- reconstructing *topological types* of graphs
- detecting homotopy types of noisy graphs by using plane shadows of Rips complexes
- statistics of persistent clusters or Betti numbers for randomly generated clouds
- automatic choice of a *density threshold* to find persistent clusters with long life spans

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶