Syzygies and Multi-Dimensional Persistence

Kevin P. Knudson

Department of Mathematics University of Florida kknudson@honors.ufl.edu http://kpknudson.com/

July 16, 2013

Set-up

Begin with a simplicial complex X with a filtration

$$X_{\bullet} = \{X_{v} | v \in \mathbb{N}^{n}\}.$$

Here, \mathbb{N}^n is ordered via $u = (u_1, \ldots, u_n) \leq v = (v_1, \ldots, v_n)$ if $u_i \leq v_i$ for $i = 1, \ldots, n$.

Set-up

Begin with a simplicial complex X with a filtration

$$X_{\bullet} = \{X_{v} | v \in \mathbb{N}^{n}\}.$$

Here, \mathbb{N}^n is ordered via $u = (u_1, \ldots, u_n) \leq v = (v_1, \ldots, v_n)$ if $u_i \leq v_i$ for $i = 1, \ldots, n$.

Persistence in this context is fuzzy–"barcodes" do not really exist when n > 1. In fact, persistence modules

$$M = \bigoplus_{v \in \mathbb{N}^n} H_i(X_v; k)$$

are parametrized by a certain quotient $G \setminus V$, where V is the algebraic variety of A_n -modules with generators and relations:

 ξ_0 = multiset in \mathbb{N}^n giving locations where homology classes are born ξ_1 = multiset in \mathbb{N}^n giving locations where homology classes die

and G is a certain algebraic group $(A_n = k[x_1, \ldots, x_n])$.

Question: Why stop there?

Question: Why stop there?

Note the following:

$$\xi_0 =$$
 generating set for $\operatorname{Tor}_1^{A_n}(M, k)$
 $\xi_1 =$ generating set for $\operatorname{Tor}_1^{A_n}(M, k)$

Question: Why stop there?

Note the following:

$$\xi_0$$
 = generating set for $\operatorname{Tor}_0^{A_n}(M, k)$
 ξ_1 = generating set for $\operatorname{Tor}_1^{A_n}(M, k)$

If n = 1, there are no higher Tor groups and that is why one-dimensional persistence is so neat.

But if $n \ge 2$, we have higher Tor groups.

<u>Definition</u>. $\xi_i(M) = \{v \in \mathbb{N}^n | a \text{ generator of Tor}_i^{\mathcal{A}_n}(M, k) \text{ exists} \}$

<u>Definition.</u> $\xi_i(M) = \{v \in \mathbb{N}^n | \text{a generator of Tor}_i^{\mathcal{A}_n}(M, k) \text{ exists} \}$ Note: $\xi_i(M) = \emptyset$ for i > n. (Hilbert's Syzygy Theorem) **Definition.** $\xi_i(M) = \{v \in \mathbb{N}^n | \text{a generator of Tor}_i^{A_n}(M, k) \text{ exists} \}$ Note: $\xi_i(M) = \emptyset$ for i > n. (Hilbert's Syzygy Theorem) What can we say about these ξ_i ? Do they have some geometric meaning?

A Simple Example

A filtration of the circle

A Simple Example

k ²	k	k	0	0	k
k ³	<i>k</i> ²	k	0	0	0
	H ₀			H_1	
	The modules H_0 and			d <i>H</i> ₁	

A filtration of the circle

For these modules, we have the following sets:

$$\begin{aligned} \xi_0(H_0) &= \{((0,0),3)\} \\ \xi_1(H_0) &= \{((0,1),1),((1,0),1),((2,0),1)\} \\ \xi_2(H_0) &= \{((2,1),1)\} \end{aligned}$$

For these modules, we have the following sets:

$$\begin{aligned} \xi_0(H_0) &= \{((0,0),3)\} \\ \xi_1(H_0) &= \{((0,1),1),((1,0),1),((2,0),1)\} \\ \xi_2(H_0) &= \{((2,1),1)\} \end{aligned}$$

$$\begin{aligned} \xi_0(H_1) &= \{((2,1),1)\} \\ \xi_i(H_1) &= \emptyset \quad i > 0 \end{aligned}$$

For these modules, we have the following sets:

$$\begin{aligned} \xi_0(H_0) &= \{((0,0),3)\} \\ \xi_1(H_0) &= \{((0,1),1),((1,0),1),((2,0),1)\} \\ \xi_2(H_0) &= \{((2,1),1)\} \end{aligned}$$

$$\begin{array}{rcl} \xi_0(H_1) &=& \{((2,1),1)\} \\ \xi_i(H_1) &=& \emptyset & i > 0 \end{array}$$

Note the relationship between $\xi_2(H_0)$ and $\xi_0(H_1)$.

Hypertor

There is a functorial way to analyze this relationship. Consider the chain complex

$$C_{ullet}(X_{ullet}) = \{\cdots
ightarrow C_i(X_{ullet}) \stackrel{\partial}{
ightarrow} C_{i-1}(X_{ullet}) \cdots \}$$

This is a chain complex in the category of A_n -modules and we may consider the hypertor modules

$$\operatorname{Tor}_{p}^{A_{n}}(C_{\bullet}(X_{\bullet}), M)$$

for any module *M*. Here, we will consider only M = k sitting in degree (0, 0, ..., 0).

Hypertor

There is a functorial way to analyze this relationship. Consider the chain complex

$$C_{ullet}(X_{ullet}) = \{\cdots
ightarrow C_i(X_{ullet}) \stackrel{\partial}{
ightarrow} C_{i-1}(X_{ullet}) \cdots \}$$

This is a chain complex in the category of A_n -modules and we may consider the hypertor modules

$$\operatorname{Tor}_{p}^{A_{n}}(C_{\bullet}(X_{\bullet}), M)$$

for any module *M*. Here, we will consider only M = k sitting in degree (0, 0, ..., 0).

As usual, there are two spectral sequences for computing this. Taking horizontal homology first:

$$E_{pq}^2 = \operatorname{Tor}_p^{A_n}(H_q(X_{\bullet}), k) \Rightarrow \operatorname{Tor}_{p+q}^{A_n}(C_{\bullet}(X_{\bullet}), k)$$

Note: We have a map

$$d^2_{2,q}:\operatorname{Tor}_2^{\mathcal{A}_n}(H_q(X_{ullet}),k) o \operatorname{Tor}_0^{\mathcal{A}_n}(H_{q+1}(X_{ullet}),k)$$

That is, we have a functorial way to relate elements of $\xi_2(H_q(X_{\bullet}))$ to $\xi_0(H_{q+1}(X_{\bullet}))$.

In the case of the simple circle example shown earlier, we have one such interesting map:

$$d^2_{2,0}:\operatorname{Tor}_2^{\mathcal{A}_2}(H_0(X_{\bullet}),k)\to\operatorname{Tor}_0^{\mathcal{A}_2}(H_1(X_{\bullet}),k).$$

In the case of the simple circle example shown earlier, we have one such interesting map:

$$d_{2,0}^2:\operatorname{Tor}_2^{A_2}(H_0(X_{\bullet}),k)\to\operatorname{Tor}_0^{A_2}(H_1(X_{\bullet}),k).$$

By choosing suitable resolutions of H_0 and H_1 (e.g., H_1 is a free A_2 -module with a single generator in degree (2, 1)), we see that

$$\operatorname{Tor}_{2}^{A_{2}}(H_{0}(X_{\bullet}), k) = k(2, 1) \\ \operatorname{Tor}_{0}^{A_{2}}(H_{1}(X_{\bullet}), k) = k(2, 1)$$

In the case of the simple circle example shown earlier, we have one such interesting map:

$$d_{2,0}^2:\operatorname{Tor}_2^{A_2}(H_0(X_{\bullet}),k)\to\operatorname{Tor}_0^{A_2}(H_1(X_{\bullet}),k).$$

By choosing suitable resolutions of H_0 and H_1 (e.g., H_1 is a free A_2 -module with a single generator in degree (2, 1)), we see that

$$Tor_{2}^{A_{2}}(H_{0}(X_{\bullet}), k) = k(2, 1)$$

$$Tor_{0}^{A_{2}}(H_{1}(X_{\bullet}), k) = k(2, 1)$$

So the function in question is a map $k(2,1) \rightarrow k(2,1)$.

There are two ways to show that this map is an isomorphism:

There are two ways to show that this map is an isomorphism:

• Note that $C_0(X_{\bullet})$ and $C_1(X_{\bullet})$ are free A_2 -modules. Thus,

$$\operatorname{Tor}_{i}^{\mathcal{A}_{2}}(C_{\bullet}(X_{\bullet}),k)=H_{i}(C_{\bullet}(X_{\bullet})\otimes_{\mathcal{A}_{2}}k).$$

It is easy to see that

$$Tor_0 = k(0,0)^3$$

and

$$\mathbf{Tor}_1 = k(0,1) \oplus k(1,0) \oplus k(2,0)$$

living in degrees (0,0) and (1,0), respectively, in the E^2 -term of the spectral sequence. Since $E^3 = E^{\infty}$ and $\mathbf{Tor}_2 = 0$, we must have that $d_{2,0}^2 : k(2,1) \to k(2,1)$ is an isomorphism.

There are two ways to show that this map is an isomorphism:

• Note that $C_0(X_{\bullet})$ and $C_1(X_{\bullet})$ are free A_2 -modules. Thus,

$$\operatorname{Tor}_{i}^{\mathcal{A}_{2}}(C_{\bullet}(X_{\bullet}),k)=H_{i}(C_{\bullet}(X_{\bullet})\otimes_{\mathcal{A}_{2}}k).$$

It is easy to see that

$$Tor_0 = k(0,0)^3$$

and

$$\mathsf{Tor}_1 = k(0,1) \oplus k(1,0) \oplus k(2,0)$$

living in degrees (0,0) and (1,0), respectively, in the E^2 -term of the spectral sequence. Since $E^3 = E^{\infty}$ and $\mathbf{Tor}_2 = 0$, we must have that $d_{2,0}^2 : k(2,1) \to k(2,1)$ is an isomorphism.

• Do the dirty work-choose a Cartan-Eilenberg resolution of $C_{\bullet}(X_{\bullet})$ and compute directly that $d_{2,0}^2 = -id$.

Observe that in our circle example, the generator of $\operatorname{Tor}_{2}^{A_2}(H_0(X_{\bullet}), k)$ represents the first location where a collection of relations in H_0 is not an independent set. This happens either because there is a duplication of relations, or, as in this case, because they have come together to form a 1-cycle.

Observe that in our circle example, the generator of $\operatorname{Tor}_{2}^{A_2}(H_0(X_{\bullet}), k)$ represents the first location where a collection of relations in H_0 is not an independent set. This happens either because there is a duplication of relations, or, as in this case, because they have come together to form a 1-cycle.

This is a general result.

<u>Theorem</u>. The kernel of the map

$$d_{2,q}^2:\operatorname{\mathsf{Tor}}_2^{\mathcal{A}_n}(H_q(X_ullet),k) o\operatorname{\mathsf{Tor}}_0^{\mathcal{A}_n}(H_{q+1}(X_ullet),k)$$

is generated by syzygies resulting from the same relation being imposed in $H_q(X_{\bullet})$ in multiple degrees. If a nonzero $w \in \operatorname{Tor}_0^{A_n}(H_{q+1}(X_{\bullet}), k)$ is in the image of $d_{2,q}^2$, say $d_{2,q}^2 z = w$, then $w = \sum \alpha_i w_i$ for some (q+1)-simplices w_i where each w_i corresponds to an element of $\operatorname{Tor}_1^{A_n}(B_q(X_{\bullet}), k)$ and z gives a syzygy among the w_i .

Denote the generators of $C_1(X_{\bullet}, k)$ by a, b, c, sitting in degrees (0, 1), (1, 0), and (2, 0), respectively. For simplicity, take $k = \mathbb{F}_2$. Then the generator of $\operatorname{Tor}_0^{A_2}(H_1(X_{\bullet}), k)$ is represented by the cycle w = a + b + c. Write $\partial a = x + z$, $\partial b = x + y$, and $\partial c = y + z$; these belong to $B_0(X_{\bullet})$. Then we have the syzygy

$$z = x_1^2(x+z) + x_1x_2(x+y) + x_2(y+z) \in \mathsf{Tor}_1^{\mathcal{A}_2}(\mathcal{B}_0(X_{ullet}),k)$$

and $d_{2,0}^2 z = w$.

When n = 2, this is the whole story. For n > 2, we get higher differentials

$$d_{\ell,q}^{\ell}: E_{\ell,q}^{\ell} \to E_{0,q+\ell-1}^{\ell}.$$

These relate elements of $\operatorname{Tor}_{\ell}^{A_n}(H_q(X_{\bullet}), k)$ to elements of $\operatorname{Tor}_{0}^{A_n}(H_{q+\ell-1}(X_{\bullet}), k)$.

Question. Is there an interesting geometric interpretation of these maps?

Fin