Geometry and Topology of random 2-complexes

Michael Farber University of Warwick, UK July 2013

The Whitehead Conjecture

Let X be a 2-dimensional finite simplicial complex. X is called *aspherical* if $\pi_2(X) = 0$. Equivalently, X is aspherical if the universal cover \overline{X} is contractible. Examples of aspherical 2-complexes: Σ_{g} with g > 0; N_{σ} with g > 1. Non-aspherical are S^2 and P^2 (the real projective plane).

In 1941, J.H.C. Whitehead suggested the following question:Is every subcomplex of an aspherical 2-complex also aspherical?This question is known as the Whitehead conjecture.

Equivalently one may ask: suppose that *K* is a connected 2-complex with $\pi_2(K) \neq 0$ and let

$$L = K \cup_f D^2, f : S^1 \to K$$

be obtained by attaching a 2-cell. Is $\pi_2(L) \neq 0$?

Theorem (J.F. Adams, 1955): If $L = K \cup_f D^2$ and $\pi_2(K) \neq 0$, while $\pi_2(L) = 0$, then the kernel of the homomorphism $\pi_1(K) \to \pi_1(L)$

contains a nontrivial perfect subgroup.

This implies some (earlier) results of W.H. Cockcroft who considered the cases when $\pi_1(K)$ is finite, free, or free abelian.

Question :

Can one test the Whitehead Conjecture probabilistically?

Tasks :

1. Produce aspherical 2-complexes randomly;

2. Estimate the probability that the Whitehead Conjecture is satisfied

The Linial - Meshulam model

Consider the complete graph K_n on *n* vertices $\{1, 2, \dots, n\}$. A random 2-complex X is obtained from K_n by adding each potential 2-simplex (*ijk*) at random, with probability $p \in (0,1)$, independently of each other. The finite probability space Y(n,p)contains $2^{\binom{n}{3}}$ simplicial complexes satisfying $\Delta_{n}^{(1)} \subset Y \subset \Delta_{n}^{(2)}$ and the probability function $P: Y(n, p) \rightarrow R$ is given by $\binom{n}{f(Y)}$

$$P(Y) = p^{f(Y)} (1-p)^{(3)^{-f(Y)}}.$$

4 D

 $(1-p)^4$

Topology of random 2 - complexes

For simplicity I will assume that $p = n^{\alpha}$, where $\alpha < 0$.

If $\alpha > -1$ then *Y* contains a subcomplex isomorphic to the tetrahedron T.

$$g:V(T) \rightarrow \{1,2,...,n\}$$

$$J_g:Y(n,p)\to\mathbb{R}$$

 $J_g(Y) = \begin{cases} 1, & \text{if } g \text{ extends to an embedding } T \rightarrow Y \\ 0, & \text{otherwise} \end{cases}$

$$E(J_g) = p^4$$

$$X = \sum_{g} J_{g}, \quad X : Y(n, p) \to \mathbb{R}$$

X counts the number of tetrahedra in a random 2-complex.

$$E(X) = \binom{n}{4} p^4 \sim n^4 p^4 = n^{4(1+\alpha)} \to \infty,$$

if $\alpha > -1$.

The results stated below were obtained jointly with Armindo Costa.

Theorem A:

Theorem B :

Triangulation of projective plane with 6 vertices and 10 faces. (Note: 3/5=6/10)

Torsion in the fundamental group of a random 2-complex

Cohomological dimension of fundamental group of a random 2-complex

Theorem D :

Complexes Z_2 (left) and Z_3 (right)

Assume that $\alpha < -1 / 2 \cdot$ Then a random 2-complex $Y \in Y(n, p)$ with probability tending to one has the following property: any aspherical subcomplex $Y' \subset Y$ satisfies the Whitehead Conjecture, *i*·e· every subcomplex $Y'' \subset Y'$ is also aspherical·

Isoperimetric constants

Let X be a simplicial 2-complex. For a simplicial null-homotopic loop $\gamma : S^1 \to X^{(1)}$ one defines the length $|\gamma|$ and the area $A_X(\gamma)$. The isoperimetric constant of X is defined as $I(X) = inf\left\{\frac{|\gamma|}{A_X(\gamma)}; \gamma : S^1 \to X\right\}$. I(X) > 0 iff the fundamental group $\pi_1(X)$ is hyperbolic. The inequality I(X) > a > 0 means that an isoperimetric inequality $A_X(\gamma) < a^{-1} \cdot |\gamma|$ is satisfied for any null-homotopic loop $\gamma : S^1 \to X$. Theorem (Babson, Hoffman, Kahle, 2011): If the probability parameter α satisfies $\alpha < -1 / 2$ then the fundamental group of a random 2-complex $Y \in Y(n, p), p = n^{\alpha}$, is hyperbolic, a·a·s·

Theorem :

If the probability parameter α satisfies $\alpha < -1/2$ then there exists a constant $C_{\alpha} > 0$, such that, with probability tending to one, a random 2-complex $Y \in Y(n, p), p = n^{\alpha}$, has the following property: any subcomplex $Y' \subset Y$ satisfies $I(Y') > C_{\alpha}$.

Corollary :

For α <-1/2 a random 2-complex contains no subcomplexes homeomorphic to the torus T^2 , $a \cdot a \cdot s \cdot$

Minimal spheres

Let Y be a simplicial complex with $\pi_2(Y) \neq \mathbf{0}$. Define M(Y) as the minimal number of faces in a 2-complex Σ homeomorphic to 2-sphere such that there exists a homotopically nontrivial simplicial map $\Sigma \rightarrow Y$. We also define $M(Y) = \mathbf{0}$ if $\pi_2(Y) = \mathbf{0}$.

Theorem :

If Y is a 2-complex satisfying I(Y) > c > 0 then $M(Y) \le \left(\frac{16}{c}\right)^2$.

The proof of this deterministic statement uses an inequality of Papasoglu for Cheeger constants of triangulations of the sphere.

Proof :

Consider a homotopically nontrivial simplicial map $\Sigma \to Y$ where Σ is homeomorphic to S^2 and $A(\Sigma) = M(Y)$. Consider the Cheeger constant of Σ , $h\left(\Sigma\right) = \min_{S \subset \Sigma} \left\{ \frac{\left|\partial S\right|}{A(S)} ; A(S) \leq A(\Sigma) \neq 2 \right\}.$

Here S is a subcomplex homeomorphic to the disc \cdot

One can show that I(Y) > c > 0 implies $h(\Sigma) \ge c$. On the other hand, Papasoglu proved an inequality

$$h\left(\Sigma\right) \leq \frac{16}{\sqrt{A\left(\Sigma\right)}}$$

Combining we obtain

$$M(Y) = A(\Sigma) \leq \left(\frac{16}{h(\Sigma)}\right)^2 \leq \left(\frac{16}{c}\right)^2$$
.

If the probability parameter α satisfies $\alpha < -1 \neq 2$ then for some constant $C_{\alpha} > 0$ a random 2-complex $Y \in Y(n, p)$, $p = n^{\alpha}$, with probability tending to one has the following property: for any subcomplex $Y' \subset Y$ one has $M(Y') \leq C_{\alpha}$.

Gromov's local - to - global Principle

Theorem :

Let X be a finite 2-complex and let C > 0be a constant such that any pure subcomplex $S \subset X$ having at most $44^3 \cdot C$ faces satisfies $I(S) \ge C \cdot$ Then $I(X) \ge C \cdot 44^{-1} \cdot$

Classification of minimal cycles

A finite 2-complex Z is said to be a minimal cycle if $b_2(Z) = 1$ and for any proper subcomplex $Z' \subset Z$ one has $b_2(Z') = 0$.

For a minimal cycle Z we denote

$$\mu(Z) = \frac{v(Z)}{f(Z)} \in \mathbb{Q}^{\bullet}$$

We are interested in describing all minimal cycles satisfying $\mu(Z) > 1 \swarrow 2 \cdot$

Theorem MinCycle :

Any minimal cycle Z satisfying $\mu(Z) > 1 / 2$ is homeomorphic to one of four complexes

$$Z_1 = S^2$$
, Z_2 , Z_3 , $Z_4 = P^2 \cup \Delta^2$,
where $P^2 \cap \Delta^2 = P^1$ and Z_2 , Z_3 are shown on
the following slide.

Complexes Z_2 (left) and Z_3 (right)

Theorem :

A random 2-complex $Y \in Y(n, p)$, $p = n^{\alpha}$, $\alpha < -1 \neq 2$ with probability tending to one has the following property: for a subcomplex $Y' \subset Y$ the following properties are equivalent:

(A) Y' is aspherical;

(B) Y' contains no subcomplexes with at most $-4(1+2\alpha)^{-1}$ faces which are homeomorphic to S^2 , P^2 , Z_2 , Z_3 .

Assume that $\alpha < -1 / 2 \cdot$ Then a random 2-complex $Y \in Y(n, p)$ with probability tending to one has the following property: any aspherical subcomplex $Y' \subset Y$ satisfies the Whitehead Conjecture, *i*·e· every subcomplex $Y'' \subset Y'$ is also aspherical·

Proof of $(B) \Rightarrow (A)$ Let $Y' \subset Y$, $Y \in Y(n, p)$, $p = n^{\alpha}$. Then $M(Y') < C_{\alpha}$, a.a.s. There are finitely many isomorphism types of triangulations $\{S_i\}$ of the 2-sphere with at most C_{α} faces. There are also finitely many simplicial quotients $\{\varphi_{i}(S_{j})\}$ of such triangulations. The quotients satisfying $\mu\left(\phi_{i}\left(S_{j}\right)\right) < -\alpha$ cannot be embedded into Y. Thus we shall only consider the quotients satisfying $\mu\left(\phi_{i}\left(S_{i}\right)\right) \geq -\alpha > 1 \nearrow 2 \cdot$

Case when $b_2\left(\phi_j\left(S_j\right)\right) > 0$. Then the image $\phi_i(S_i)$ contains a minimal cycle which by Theorem MinCycle is homeomorphic to one of $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ $\mu(Z_i) \geq -\alpha \text{ implies } f(Z_i) \leq -4(1+2\alpha)^{-1}$ which contradicts our assumption (A).

Case
$$b_2\left(\phi_j\left(S_j\right)\right) = \mathbf{0} \cdot$$

Then one shows that the image $\phi_j\left(S_j\right)$
contains a projective plane with at most
 $-4\left(1+2\alpha\right)^{-1}$ faces which contradicts our assumption $(A) \cdot$

What does all this mean for the deterministic Whitehead Conjecture?

Geometry and topology of random 2-complexes

Theorem C :

Let $m \geq 3$ be an odd prime. If the proability parameter α satisfies $\alpha < -1 / 2$ then, with probability tending to one as $n \to \infty$, a random 2-complex $Y \in Y(n, p)$ has the following property: the fundamental group of any subcomplex $Y' \subset Y$ has no m - torsion.

Sketch of the proof Consider the Moore surface $M(\mathbb{Z}_m, \mathbf{1}) = S^1 \cup_m D^2$, $\pi_1(M(\mathbb{Z}_m, \mathbf{1})) = \mathbb{Z}_m$.

Maps
$$M(\mathbb{Z}_m, 1) \to Y$$
 inducing mono on π_1 describe m - torison in $\pi_1(Y)$.

 Σ -triangulation of the Moore surface. We shall consider simplicial maps $\Sigma \rightarrow Y$ such that:

- they induce mono on π_1
- have shortest possible length of the singular curve $C \subset \varSigma$
- have smallest possible area (the number of faces)

One defines the number $N_m(Y)$ as the number of faces in Σ above.

Lemma :
If
$$I(Y) > c > 0$$
 then
 $N_m(Y) \le \left(\frac{6m}{c}\right)^2$
The proof uses systollic inequality
 $sys(\Sigma) \le 6 \cdot A(\Sigma)^{1/2}$
(Gromov, Katz, Rudyak,...)