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Let  be a 2-dimensional finite simplicial complex.
 is called  if ( ) = 0.

Equivalently,  is  if the universal cover  is contractible.
Examples of aspherical 2-complex
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The Whitehead Conjecture
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Is every subcomplex of an aspherical 2-complex also asph
In 1941, J.H.C. Whitehead suggested the following question:

?
This question is known as the Whitehead conjec

e
t

rical
ure.
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Equivalently one may ask: suppose that  is a connected
2-complex with

and let

be obtained by attaching a 2-cell. Is
(L) 0?
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 (J.F. Adams, 1955): If  and (K)  

while (L) then the kernel of the homomorphism
 

contains a nontrivial perfect subgroup.

This implies some (earlier) results of W.H. Coc
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considered the cases when  is finite, free, or free abelian.1 K( )
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Can one test the Whitehead Conjecture probabilistically?

1. Produce aspherical 2-complexes randomly;
2. Estimate the probability that the Whitehead Conjecture 
is satisfied

Question :

Tasks :
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 Consider the complete graph  on  vertices 

A random 2-complex X  is obtained from  by adding each 
potential 2-simplex  at random, with probabiltiy  
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The Linial - Meshulam model
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( ) ( , ),
independently of each other. The finite probability space 

contains  simplicial complexes satisfying

and the probability function  is given by

3

1 2

3

2

1

 
 
 

 

 

 



 

n

n n

n
f Y

Y n p

Y
P Y n p R

P Y p p

( ) ( )

( )

( , )

: ( , )

( ) ( )

 

 f Y( )
.

Geometry and topology of random 2-complexes 8



Case n=4:
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For simplicity I will assume that  where 

If  then for any fixed finite group of coefficients  one has 
H  a.a.s. ( ). asymptotically almost sur inely (L

Topology of  random 2 - complexes

, .

( ; ) ,
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0 ial-Meshulam).

If  then Y simplicially collapses to a graph, a.a.s. 
(Kozlov, Costa-Cohen-Farber-Kappeler, Aronshtam-Linial-Luczak-Meshulam).
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If  then  is simply connected, a.a.s.

If <  then  is nontrivial and is hyperbolic

in the sense of Gromov, a.a.s.
Babson, Hoffman, Kahle, 2011.
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 

  if  extends to an embedding 
 otherwise

If  then  contains a subcomplex isomorphic 
to the tetrahedron T.
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X counts the number of tetrahedra in a random 2-complex.

if 
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The results stated below were obtained 
jointly with Armindo Costa. 
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If < -3/5 then the fundamental group  of a random 
2-complex  has cohomological dimension 2, a.a.s.
In particular,  is torsion free, a.a.s.
Moreover, if  then cd(

Theorem :
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 Y
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


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If the probability parameter  satisfies

 
then the fundamental group  
contains elements of order 2, a.a.s.

Theorem B :

/ /

Geometry and topology of random 2-complexes 17



1

2 3

1

23

Triangulation of projective plane with 6 vertices 
and 10 faces.  
(Note: 3/5=6/10)
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Let  be an odd prime. 
If the proability parameter  satisfies 

 then,  with probability tending to one as
 a random 2-complex  has the following 

property: the fundamental gro

Theorem C :

/
, ,

Y Y m  
up of any subcomplex 

 has no torsion'
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-1 -3/5 -1/2

Free

No torsion Has 2-torsion

Trivial

Torsion in the fundamental group of a random 2-complex
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-1 -3/5 -1/2

CD=1

CD=∞CD=2

Cohomological dimension of fundamental group of a 
random 2-complex

Geometry and topology of random 2-complexes 21



 

aspherical

Assume that the probability parameter  satisfies <-1/2.  
Then a random 2-complex , , with probability 
tending to one has the following property:
any subcomplex  is  i
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f and only if it

contains no subcomplexes with at most 

faces which are homeomorphic to the sphere  the
real projective plane  or to the complexes  
shown below. 
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Z Z2 3Complexes  (left) and  (right)
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 Y Y n p
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1 2Assume that 
Then a random 2-complex  with probability 
tending to one has the following property: any aspherical 
subcomplex Whitehe satisfies the a , 
i.e. 

d Conje
e

c
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t
ry su

ure
 

Corollary :

/ .
,

'
Y Ybcomplex  is also aspherical.'' '
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Let  be a simplicial 2-complex. For a simplicial null-homotopic 

loop  one defines the   and 

the  The

length
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 
 

The inequality  means that an  

  is satisfied for any null-homotopic 

loop 

It is known that in the class of hype
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 problem as well as the isomorphism 
problem are algorithmocally solvable. 
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 
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:
If the probability parameter  satisfies 
then the fundamental group of a random 2-complex

 is hyperbolic, a.a.s. 

Theorem Babson,Hoffman,Kahle,
/

, , ,
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 
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If the probability parameter  satisfies <-1/2 then
there exists a constant  such that,
with probability tending to one, a random 2-complex 

, has the following property: 

any sub

Theorem :
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T


2

For <-1/2 a random 2-complex contains no subcomplexes 
homeomorphic to the torus , a.a.s.

Corollary :
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Define  as the minimal number of faces in a 
2-complex  homeomorphic to 2-sphere such that 
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Minimal spheres
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If  is a 2-complex satisfying  then 

The proof of this deterministic statement uses an inequality 
of Papasoglu for Cheeger constants of triangulations of the sphere. 

Theorem :

.
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If the probability parameter  satisfies 
then for some constant  a random 2-complex 

 with probability tending to 
one has the following property: for any subcomplex 
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 
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Let  be a finite 2-complex and let  
be a constant such that any pure subcomplex 
having at most  faces satisfies 

Then 

Gromov's local to global Principle
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 
 
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 

A finite 2-complex  is said to be a  if  

and for any proper subcomplex  one has 

For a minimal cycle  we denote 

We are interest

minimal c

ed

ycle

 i

Classification of minimal cycles
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 Any minimal cycle  satisfying  is 
homeomorphic to one of four complexes 

where  and  are shown on 
the following slide.
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Z Z2 3Complexes  (left) and  (right)
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 

 
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A random 2-complex 
with probability tending to one has the following property:
for a subcomplex  the following properties are
equivalent:

  is aspherical;

  contains no

Theorem :
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Then a random 2-complex  with probability 
tending to one has the following property: any aspherical 
subcomplex Whitehe satisfies the a , 
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Corollary :
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'
Y Ybcomplex  is also aspherical.'' '
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Let 

Then  a.a.s.
There are finitely many isomorphism types of triangulations

of the 2-sphere with at most  faces. 

There are also finitely many simplicial quotients 
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Thus we shall only consider the quotients satisfying
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  
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     
 

Case when 

Then the image  contains a minimal cycle which 

by Theorem MinCycle is homeomorphic to one of 

 implies 

which contradicts our assumption 
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  
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Case 

Then one shows that the image  

contains a projective plane with at most 

 faces which contradicts our assumption 
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What does all this mean for
the deterministic Whitehead Conjecture?
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Let  be an odd prime. 
If the proability parameter  satisfies 

 then,  with probability tending to one as
 a random 2-complex  has the following 

property: the fundamental gro

Theorem C :

/
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up of any subcomplex 

 has no torsion'

Geometry and topology of random 2-complexes 46



Geometry and topology of random 2-complexes 47

 
  

 
 

Consider the Moore surface 

Maps  inducing mono on  describe 

torison in 

.

Sketch of the proof
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 -triangulation of the Moore surface.
We shall consider simplicial maps  such that:
- they induce mono on 
- have shortest possible length of the singular curve 
- have smallest possible area (th

Y

C










1

 

e number of faces)

One defines the number  as the number of faces in 
 above. 

mN Y




Geometry and topology of random 2-complexes 49

 

 

   

If  then 

The proof uses systollic inequality 

(Gromov, Katz, Rudyak,...)
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