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The Whitehead Conjecture

Let X be a 2-dimensional finite simplicial complex.
X 1s called aspherical 1if 7,(X) = 0.

Equivalently, X is aspherical if the universal cover X is contractible.

Examples of aspherical 2-complexes: 2, with g > 0;

N, with g > 1.

Non-aspherical are S* and P* (the real projective plane).



In 1941, J.H.C. Whitehead suggested the following question:

Is every subcomplex of an aspherical 2-complex also aspherical?

This question 1s known as the Whitehead conjecture.
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Equivalently one may ask: suppose that K 1s a connected
2-complex with

7,(K)#0

and let

L=Ku,D*, f:S'">K

be obtained by attaching a 2-cell. Is

7,(L) #07?



Theorem (J.F. Adams, 1955): If L=K U, D? and 7,(K)#0,

while 7,(L) =0,then the kernel of the homomorphism
7(K)—>rm/(L)

contains a nontrivial perfect subgroup.

This implies some (earlier) results of W.H. Cockcroft who

considered the cases when 7, ( K ) 1s finite, {ree, or free abelian.
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Question :

Can one test the Whitehead Conjecture probabilistically?

Tasks :

1. Produce aspherical 2-complexes randomly;
2. Estimate the probability that the Whitehead Conjecture

1s satisfied



The Linial - Meshulam model

Consider the complete graph K, on n vertices {1,2,---,n} .

A random 2-complex X 1s obtained from K by adding each
potential 2-simplex (ijk ) at random, with probabiltiy p € (0,1 ),
independently of each other. The finite probability space Y (n,p)

n)

contains 2(3/ simplicial complexes satisfying
AV cYca™®

and the probability function P : Y (n,p ) —> R is given by

n

P(vy=p/ 1 p )






Topology of random 2 - complexes

For simplicity I will assume that | p =n" |, where a < 0.
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-1 1/2 0

Phase transitions



If o >—1 then Y contains a subcomplex 1somorphic
to the tetrahedron T.

g:V(T)—>{1,2,...,n}
J,:Y(n,p)—>R

I )7 1, lfg extends to an embedding T-Y
( ) 1
g 0, otherwise

E(J,)=Dp"



X=»J, X:Y(np)>R
8

X counts the number of tetrahedra 1n a random 2-complex.
(1)
E(X)= p4 _ n4p4 _ i) _y 0,
4
if a>-1.




The results stated below were obtained
jointly with Armindo Costa.



Theorem A:

Geometry and topology of random 2-complexes

16



Theorem 8 .



3 2

Triangulation of projective plane with 6 vertices
and 10 faces.

(Note: 3/5=6/10)



Theorem C
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No torsion Has 2-torsion

Free } Trivial

1 3/5  -1/2 24

Torsion in the fundamental group of a random 2-complex



CD=2 CD=oo

CD=1

1 3/5  -1/2 24

Cohomological dimension of fundamental group of a
random 2-complex
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Theorer? D .
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Complexes Z, (left) and Z, (right)



Corollary .

Assume that a < -1/ 2-
Then a random 2-complex Y € Y (n, p) with probability

tending to one has the following property: any aspherical
subcomplex Y’ c Y satisfies the Whitehead Conjecture,

ire: every subcomplex Y < Y’ s also aspherical-



/[soperimetric constants

Let X be a simplicial 2-complex- For a simplicial null-homotopic
loop v » S' - X" one defines the length ‘7/‘ and
the area A, (7/) The isoperimetric constant of X is defined as

\

-y

A (7) J
I (X ) > 0 jff the fundamental group 7, (X ) is hyperbolic-

,'y.'Sl—)X>-

I(X) = /NF <

Geometry and topology of random 2-complexes 25



The inequality 1 (X ) > a > 0 means that an isoperimetric

inequality A, (7/) < a
loop v » S' > X-

1

- ‘7/‘ is satisfied for any null-homotopic

Geometry and topology of random 2-complexes 26



Theores? (54&50/7, Hoffimarn, Kahle, 201 1) :

If the probability parameter o satisfies a« < —1 / 2
then the fundamental group of a random 2-complex

Y € Y(n, p), p = n”, is hyperbolic, a-a-s:



Theorerr .

If the probability parameter o satisfies a<-1/2 then
there exists a constant C, > 0, such that,
with probability tending to one, a random 2-complex

Y eY (n, p) , p = n”, has the following property:
any subcomplex Y’ c Y satisfies | (Y ’) > C -



Corollary .

For a<-1/2 a random 2-complex contains no subcomplexes

homeomorphic to the torus T*, a-a-s:



Hinimal spheres

Let Y be a simplicial complex with r, (Y ) # 0-

Define M (Y) as the minimal number of faces in a

2-complex X homeomorphic to 2-sphere such that
there exists a homotopically nontrivial simplicial map
2 > Y

We also define M(Y) =0 if «, (Y) =0-



Theorerm .

IFY is a 2-complex satisfying I (Y) > c > 0 then

M(Y) < (E)Z :

C

The proof of this deterministic statement uses an inequality
of Papasoglu for Cheeger constants of trianqulations of the sphere-



Froof .

Consider a homotopically nontrivial simplicial map > — Y
where X is homeomorphic to S* and A(Z) =M (Y)
Consider the Cheeger constant of X,

h(Z) = s {116(“2) s A(S) S A(2) 7 21-

Sc2

Here S is a subcomplex homeomorphic to the disc-






One can show that I (Y) > c > 0 implies h (Z) >
On the other hand, Papasoglu proved an inequality

5\ < 16 ‘
RANAT)

Combining we obtain

M(Y) = A(Z) < th;)j < (ET .




Theorern .

If the probability parameter o satisfies aa < -1 / 2
then for some constant C > 0 a random 2-complex

Y €Y (n, p) , p = n“, with probability tending to
one has the following property: for any subcomplex
Y’ <Y one has M(Y’) < C,



Gromov’s local— to— global FPrinciple

Theorerm .
Let X be a finite 2-complex and let C > (0
be a constant such that any pure subcomplex S c X

having at most 44’ - C faces satisfies | (S) > C-
Then 1(X) > C - 447"



Classification of rmmimal cycles

A finite 2-complex Z is said to be a minimal cycle if b, (Z =1
and for any proper subcomplex Z’ — Z one has b, (Z ’) =0-

For a minimal cycle Z we denote

ﬂ(z) - f(Z) e Q

We are interested in describing all minimal cycles
satisfying ,u(Z) >1/2-



Theoretm MinCycle .

Any minimal cycle Z satisfying ,u(Z) >1/ 2 s
homeomorphic to one of four complexes

Z, =8,272,,2, Z, =P U A,

where P* N A* = P' and Z,, 2, are shown on

the following slide-



Complexes Z, (left) and Z, (right)



Theorern .

A random 2-complex Y €Y (n, p), p=n‘,a<-1/2
with probability tending to one has the following property:
for a subcomplex Y’ c Y the following properties are
equivalent:

(A) Y/ s aspherical;
(B) Y/ contains no subcomplexes with at most - 4(1 + 205)_1

faces which are homeomorphic to S*, P*,Z,,Z,-



Corollary .

Assume that a < -1/ 2-
Then a random 2-complex Y € Y (n, p) with probability

tending to one has the following property: any aspherical
subcomplex Y’ c Y satisfies the Whitehead Conjecture,

ire: every subcomplex Y < Y’ s also aspherical-



Proof of (B) = (A)

LetY’cY,YeY(n,p),p=n“'

Then M (Y ’) <C, aas

There are finitely many isomorphism types of triangulations

{Sj} of the 2-sphere with at most C_ faces:

There are also finitely many simplicial quotients {gpj (Sj)}

of such triangulations-

The quotients satisfying ;u(¢j (S)) < —a cannot be embedded into Y-

J

Thus we shall only consider the quotients satisfying
,u(¢j (Sj)) > —-a>1/2-



Case when b, (¢] (Sj)) > 0-
Then the image ¢. (Sj) contains a minimal cycle which

by Theorem MinCycle is homeomorphic to one of
ZII Zz! Z31 Z4'

,u(Z].) > —a implies f (Zj) < -4 (1 + 205)_1

which contradicts our assumption (A)



Case b, (¢] (Sj)) =0-
Then one shows that the image ¢. (Sj)

contains a projective plane with at most

—4 (1 + 205)_1 faces which contradicts our assumption (A)



What does all this mean for
the deterministic Whitehead Conjecture?



Theorem C

Let m > 3 be an odd prime:

If the proability parameter a satisfies

a < -1/ 2 then, with probability tending to one as

n— o, arandom 2-complex Y €Y (n, p) has the following

property: the fundamental group of any subcomplex
Y’ <Y has no m — torsion -



Sketch of the proof
Consider the Moore surface M (Zm, 1) = S'u D?

(M (2,,1)) =12, m

Maps M (Zm, 1) — Y inducing mono on r, describe

m — torison in r, (Y ) .



X -triangulation of the Moore surface-

We shall consider simplicial maps ¥ — Y such that:

- they induce mono on r,

- have shortest possible length of the singular curve C < X
- have smallest possible area (the number of faces)

One defines the number N (Y) as the number of faces in

2 above:



Lemirma -
IFI1(Y) > c > 0 then

6m)
N (YY) | —
NORES
The proof uses systollic inequality
SYsS (Z) < 6-A(2)1/2
(Gromov, Katz, Rudyak,---)



