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Cut-O↵ Theorems

General

Property P holds for all n 2 N if and only P holds for n  M

Think of n as a dimension.
Here: Given thread T , T n means n copies of T run in parallel.
The property P is deadlock free in one theorem and serializable in the
other.
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PV -programs - controlling concurrency through locks

A set of shared resources R - memory, printers,...

A capacity function  : R ! N.

PV programs p are defined by the grammar

p ::= Pa | Va | p.p | p|p | p + p | p⇤

Pa is a request to access the resource a, if granted acces, lock it. Va

releases the resource.

A program without the parallel operator is a thread.

Resource r may be accessed by at most (r) threads at a time.

At a final point, the program has released all resources.

At an initial point, no resources are locked
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Geometrically
One thread is represented by a graph. n threads in parallel are represented
by a product of n graphs with “holes” where a resource is locked above its
capacity.

T1 = T2 = Pa.Pb.Va.Pa.Vb.Va  ⌘ 1
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An execution is a directed path
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Deadlock - no directed paths leave the point
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Definition

A state x = (x
1

, . . . , xn) 2 T1⇥ T2⇥ · · ·⇥ Tn is a deadlock if

The only dipaths starting in x are constant.

x is reachable: There is a dipath from 0 to x

x 6= > - not all Ti have finished

If x is a deadlock, then xi = > or xi = Pr(i) and (r(i)) other threads
hold a lock on r(i) at x
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A cut-o↵ theorem for deadlocks

Theorem 1

Let T be a PV thread accessing resources R with capacity  : R ! N.
Let T n be n copies of T run in parallel.
T

n is deadlock free for all n if and only if TM is deadlock free, where
M = ⌃r2R(r).
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The bound M is sharp.

Theorem 2

Given R = {r
1

, . . . , rk} with capacity  : R ! N, the thread
T = Pr

1

Pr

2

Vr

1

Pr

3

Vr

2

. . .PrkVrk�1

Pr

1

VrkVr1 satisfies:

There is a deadlock in T

M (and hence for all n � M) where
M = ⌃r2R(r).

There are no deadlocks in T

n for n  M

Proof: The deadlock is x = (x
1

, . . . , x
1

, x
2

, . . . , x
2

, . . . , xk . . . xk) where for
i 6= 1, xi = Pri and xi is repeated (ri�1

) times. x
1

is the last Pr
1

and is
repeated (rk) times. All resources r are locked (r) times.
Hence x is a deadlock and 6= >. (Need to check reachability and no
deadlocks in lower dimensions)
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Example. When  ⌘ 1

x = (x
1

, x
2

, . . . , xk) and M = k :

T1 requests r
1

and has a lock on rk

Ti requests ri and has a lock on ri+1

There are no deadlocks in T

n for n < M: If y is a deadlock, then there is
a yi1 = Pr(i1) and another yi2 with a lock on r(i1), so yi2 = Pr(i1 + 1)
(or the last P(r1) if r(i1) = rk .
Hence, y is a permutation of (x,>,>, . . . ,>).
Similarly for general .
Still need to see that x is reachable.
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Example
T = PaPbVaPcVbPaVcVa,  ⌘ 1. T 3 has a deadlock at (6, 2, 4)
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x = (x1, . . . , x1, x2, . . . , x2, . . . , xk . . . xk) is reachable

T = Pr

1

Pr

2

Vr

1

Pr

3

Vr

2

. . .PrkVrk�1

Pr

1

VrkVr1

a dipath from 0 to x is composed of the pieces:

�
0

: 0 ! (x
1

, 0) serially - one coordinate at a time. OBS, now hold
(rk) locks on rk

�
1

: (x
1

, 0) ! (x
1

, 0, x
k

) one coordinate at a time. Now also (rk�1

)
locks on rk�1

�j : (x1, 0, xk�j+2

, . . . , x
k

) ! (x
1

, 0, x
k�j+1

, . . . , x
k

). Now (ri ) locks
on rk�j , . . . , rk .

For �
0

: ⇢i (�0(t))  1 for i 6= k ⇢k(�0(t))  (rk).

⇢i (�1(t))  1 for i 6= k � 1, k . ⇢k(�1(t)) = k . ⇢k�1

(�
1

(t))  (rk�1

).

⇢i (�j(t))  1 for i  k � j + 1. ⇢i (�j(t)) = (ri ) for i � k � j + 2.
⇢k�j+1

(�j(t))  (rk�j+1

).
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Proof of theorem 1

Theorem 1

Let T be a PV thread accessing resources R with capacity  : R ! N.
Let T n be n copies of T run in parallel.
T

n is deadlock free for all n if and only if TM is deadlock free, where
M = ⌃r2R(r).

Prove: If there is a deadlock in T

n, then there is a deadlock in T

M .

For n < M: Let x = (x
1

, . . . , xn) be a (reachable) deadlock in T

n.
I.e. xi = Prj(i) and ⇢j(i)(x) = (rj(i)) or xi = >.

Then x̃ = (x
1

, . . . , xn,>, . . . ,>) 2 T

M is a (reachable) deadlock in T

M ,
since

⇢i (x̃) = ⇢i (x) for all i

x̃ is reachable: There is a serial path to (0,>, . . . ,>). Compose with
(�(t),>, . . . ,>), where �(t) : 0 ! x 2 T

n
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Proof of Theorem 1. n > M

x = (x
1

, . . . , xn) is a (reachable) deadlock in T

n.
Construct the directed wait for graph G (x) = (V ,E ).

V = {x
1

, . . . , xn}

There is an edge E (xi , xk) if xi = Prj and ⇢j(xk) = 1.

Properties of G (x)

If xi = >, then the vertex xi is isolated.

If xi = Prj , then the vertex xi has (rj) outgoing edges.

There are circuits in G (x): Start a walk at a non-isolated vertex. If xj
is the target of an edge, then xj 6= >, so the walk continues. G (x) is
finite, so there is a circuit L.

Let " L be the vertices reachable from L.
Let x̃ = (xi

1

, xi
2

, . . . , xim) where xij are all the vertices in " L
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x̃ = (xi
1

, xi
2

, . . . , xim) where xij are all the vertices in " L, future of a circuit
in the wait-for-graph.
Claim:

1

x̃ is a (reachable) deadlock.

2

m  M

Reachability: Let � : 0 ! x in T

n. The restriction to Ti

1

, . . .Tim is a
dipath 0 ! x̃
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The restricted Wait for Graph - future of the loop

xi
1

xi
2

xi
3

xi
4

xi
5

xil

(r(il)) locks

(r(i
1

)) locks

(r(i
1

)) edges

xij 6= >, so xij = P(r(ij)). In G (x), xij = P(r(ij)) had (r(ij)) outgoing
edges. It still has in G (x̃), since " L contains all targets.

Hence, x̃ is a deadlock.
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m  M

In G (x̃), all the m vertices are targets. Hence, they hold a lock on a
resource.

The maximal number of locks at an allowed state is M = ⌃r2R(r)

Hence, there are at most M vertices in G (x̃) (Less, if some xi hold a
lock on more than one resource.)
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Now to something di↵erent: Serializability

Pa Pb Va Pa Vb Va

Pa

Pb

Va

Pa

Vb

Va

A

A

A

A

B

T1

T2

Two executions up to dihomotopy. Equivalent to the serial executions
T1.T2 and T2.T1
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Serializability
T = PaPbVaPcVbPaVcVa is not serializable.

Pa Pb Va Pc Vb Pa Vc Va

Pa

Pb

Va

Pc

Vb

Pa

Vc

Va

A

A

A

A

B

C

T1

T2

4 Executions up to dihomotopy. Two serial executions (green). Two
non-serializable executions (red).
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Serializability - a cut-o↵ theorem

Definition

T1|T2 . . . |Tn is serializable if all execution paths are dihomotopic to a
serial execution Ti1.Ti2....Tin.

Theorem 3

Let T be a PV -thread accessing resources R all of capacity 1.
Let T n be n copies of T run in parallel. Then T

n is serializable if and only
is T 2 is serializable.
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In general studying pairwise interaction is not enough

Example

Let T1 = PcVcPaVa, T2 = PcVcPbVb, T3 = PaVaPbVb,
Each pair Ti ,Tj shares one resource.

T1

T2

T3
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Schedules as in Raussens Trace algorithm

When  = 1

All conflict n-rectangles are ⇥n
k=1

Ik , Ik = I except for two directions
Ii =]ai , bi [, Ij =]aj , bj [

One choice at a given such n-rectangle “above or below” in the
ij-plane - i waits or j waits.
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T = PaVa, T 3

T

T

T

3! serial executions, pairwise inequivalent.
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T

2 serializability

If choice at one rectangle implies choice at all other rectangles -
below all or above all rectangles
Equivalently: Only schedules J = ({1}, {1}, . . . , {1}) and
J = ({2}, {2}, . . . , {2}) are allowed.
Equivalently: The closure of the forbidden area under adding
unreachable and unsafe areas is connected.

OBS: Two phase locking is not required.

PaPbVaPcVbPdVcVd

Pa

Pb

Va

Pc

Vb

Pd

Vc

Vd

A

D

B

C

T1

T2

PaPbVa PaVbVa

Pa

Pb

Va

Pa

Vb

Va

A

A
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T

2 serializability

If choice at one rectangle implies choice at all other rectangles -
below all or above all rectangles
Equivalently: Only schedules J = ({1}, {1}, . . . , {1}) and
J = ({2}, {2}, . . . , {2}) are allowed.
Equivalently: The closure of the forbidden area under adding
unreachable and unsafe areas is connected.

OBS: Two phase locking is not required.
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T

n

If T is non-trivial, all the n! serial executions are non-equivalent, since

They have di↵erent schedules wrt. the n·(n�1)

2

n-rectangles induced
by just one PV -interval.

Equivalently: Their projections to at least one of the T

2 are
non-equivalent.
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Proof of Theorem 3

Suppose T

2 is serializable, then

1 Let ]ar , br [ correspond to a lock Pr ,Vr . There are n! schedules for
the rectangles {⇥n

k=1

Ik , Ik =]ar , br [ for k = i , j , i < j 2 [1 : n]} -
corresponding to the serial executions.

2 Fix i , j There are two schedules - i last for all or j last for all the
rectangles {I ⇥ I ⇥ · · ·⇥]ars , b

r
s [⇥I · · ·⇥]art , b

r
t [⇥I ⇥ · · ·⇥ I} where

]ars , b
r
s [⇥]art , b

r
t [ are forbidden rectangles in T

2

3 Choose one of the n! schedules for 1); that fixes all schedules in 2).
Hence, there are n! inequivalent schedules.

4 These are all realized by serial executions.
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Serializability for  > 1

There are non-serializable executions.

All serial executions are equivalent (all boundary 2-cells are allowed)

The scheduling algorithm calculates components of the trace space.

More than one component , non-serializable.
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More to do

Serializability for  > 1 - guess: There is a homological obstruction .
This needs to be described specifically for the symmetric case.

Cut-o↵ for other properties - linearizability?

Lisbeth Fajstrup (AAU) Cut-o↵ theorems for deadlocks and serializability July 2013 28 / 28


