Cut-off theorems for deadlocks and serializability

Lisbeth Fajstrup

Department of Mathematics Aalborg University

ACAT in Bremen, 2013

Cut-Off Theorems

General

Property \mathcal{P} holds for all $n \in \mathbb{N}$ if and only \mathcal{P} holds for $n \leq M$

Think of *n* as a dimension. Here: Given thread *T*, T^n means *n* copies of *T* run in parallel. The property \mathcal{P} is *deadlock free* in one theorem and *serializable* in the other. PV-programs - controlling concurrency through locks

- A set of shared resources \mathcal{R} memory, printers,...
- A capacity function $\kappa : \mathcal{R} \to \mathbb{N}$.

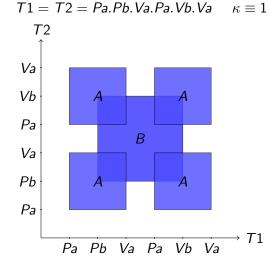
PV programs p are defined by the grammar

$$p ::= P_a \mid V_a \mid p.p \mid p \mid p \mid p + p \mid p^*$$

- P_a is a request to access the resource a, if granted acces, lock it. V_a releases the resource.
- A program without the parallel operator is a *thread*.
- Resource r may be accessed by at most $\kappa(r)$ threads at a time.
- At a final point, the program has released all resources.
- At an initial point, no resources are locked

Geometrically

One thread is represented by a graph. n threads in parallel are represented by a product of *n* graphs with "holes" where a resource is locked above its capacity.

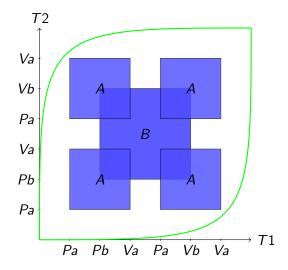


$$T = T2 = Pa.Pb.Va.Pa.Vb.Va$$
 $\kappa \equiv 1$

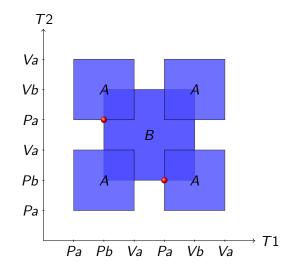
Lisbeth Fajstrup (AAU)

Cut-off theorems for deadlocks and serializabi

An execution is a directed path



Deadlock - no directed paths leave the point



Definition

A state $\mathbf{x} = (x_1, \dots, x_n) \in T1 \times T2 \times \dots \times Tn$ is a deadlock if

- The only dipaths starting in x are constant.
- x is reachable: There is a dipath from 0 to x
- $\mathbf{x} \neq \top$ not all *Ti* have finished

If **x** is a deadlock, then $x_i = \top$ or $x_i = Pr(i)$ and $\kappa(r(i))$ other threads hold a lock on r(i) at **x**

A cut-off theorem for deadlocks

Theorem 1

Let *T* be a *PV* thread accessing resources \mathcal{R} with capacity $\kappa : \mathcal{R} \to \mathbb{N}$. Let *Tⁿ* be *n* copies of *T* run in parallel. *Tⁿ* is deadlock free for all *n* if and only if *T^M* is deadlock free, where $M = \sum_{r \in \mathcal{R}} \kappa(r)$.

The bound M is sharp.

Theorem 2

- Given $\mathcal{R} = \{r_1, \ldots, r_k\}$ with capacity $\kappa : \mathcal{R} \to \mathbb{N}$, the thread $T = Pr_1Pr_2Vr_1Pr_3Vr_2 \ldots Pr_kVr_{k-1}Pr_1Vr_kVr_1$ satisfies:
 - There is a deadlock in T^M (and hence for all $n \ge M$) where $M = \sum_{r \in \mathcal{R}} \kappa(r)$.
 - There are no deadlocks in T^n for $n \leq M$

The bound M is sharp.

Theorem 2

- Given $\mathcal{R} = \{r_1, \ldots, r_k\}$ with capacity $\kappa : \mathcal{R} \to \mathbb{N}$, the thread $T = Pr_1Pr_2Vr_1Pr_3Vr_2 \ldots Pr_kVr_{k-1}Pr_1Vr_kVr_1$ satisfies:
 - There is a deadlock in T^M (and hence for all $n \ge M$) where $M = \sum_{r \in \mathcal{R}} \kappa(r)$.
 - There are no deadlocks in T^n for $n \leq M$

Proof: The deadlock is $\mathbf{x} = (x_1, \dots, x_1, x_2, \dots, x_2, \dots, x_k \dots x_k)$ where for $i \neq 1, x_i = Pr_i$ and x_i is repeated $\kappa(r_{i-1})$ times. x_1 is the last Pr_1 and is repeated $\kappa(r_k)$ times. All resources r are locked $\kappa(r)$ times. Hence \mathbf{x} is a deadlock and $\neq \top$. (Need to check reachability and no deadlocks in lower dimensions)

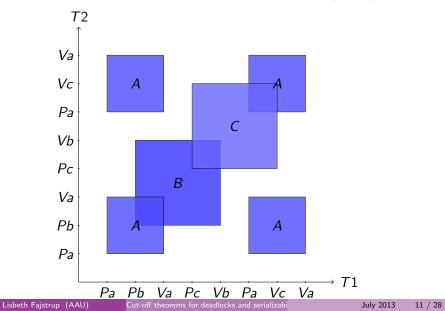
Example. When $\kappa \equiv 1$

$$\mathbf{x} = (x_1, x_2, \dots, x_k)$$
 and $M = k$:

- T1 requests r_1 and has a lock on r_k
- Ti requests r_i and has a lock on r_{i+1}

There are no deadlocks in T^n for n < M: If **y** is a deadlock, then there is a $y_{i1} = Pr(i1)$ and another y_{i2} with a lock on r(i1), so $y_{i2} = Pr(i1+1)$ (or the last P(r1) if $r(i1) = r_k$. Hence, **y** is a permutation of $(\mathbf{x}, \top, \top, \dots, \top)$. Similarly for general κ . Still need to see that **x** is reachable. Example

T = PaPbVaPcVbPaVcVa, $\kappa \equiv 1$. T^3 has a deadlock at (6,2,4)



 $\mathbf{x} = (x_1, \dots, x_1, x_2, \dots, x_2, \dots, x_k \dots x_k)$ is reachable

 $T = Pr_1Pr_2Vr_1Pr_3Vr_2...Pr_kVr_{k-1}Pr_1Vr_kVr_1$ a dipath from **0** to **x** is composed of the pieces:

• $\gamma_0: \mathbf{0} \to (\mathbf{x_1}, \mathbf{0})$ serially - one coordinate at a time. OBS, now hold $\kappa(r_k)$ locks on r_k

 $\mathbf{x} = (x_1, \dots, x_1, x_2, \dots, x_2, \dots, x_k \dots x_k)$ is reachable

- $T = Pr_1Pr_2Vr_1Pr_3Vr_2...Pr_kVr_{k-1}Pr_1Vr_kVr_1$ a dipath from **0** to **x** is composed of the pieces:
 - $\gamma_0: \mathbf{0} \to (\mathbf{x}_1, \mathbf{0})$ serially one coordinate at a time. OBS, now hold $\kappa(r_k)$ locks on r_k
 - $\gamma_1 : (\mathbf{x_1}, \mathbf{0}) \to (\mathbf{x_1}, \mathbf{0}, \mathbf{x_k})$ one coordinate at a time. Now also $\kappa(r_{k-1})$ locks on r_{k-1}

 $\mathbf{x} = (x_1, \dots, x_1, x_2, \dots, x_2, \dots, x_k \dots x_k)$ is reachable

- $T = Pr_1Pr_2Vr_1Pr_3Vr_2...Pr_kVr_{k-1}Pr_1Vr_kVr_1$ a dipath from **0** to **x** is composed of the pieces:
 - $\gamma_0: \mathbf{0} \to (\mathbf{x_1}, \mathbf{0})$ serially one coordinate at a time. OBS, now hold $\kappa(r_k)$ locks on r_k
 - $\gamma_1 : (\mathbf{x_1}, \mathbf{0}) \to (\mathbf{x_1}, \mathbf{0}, \mathbf{x_k})$ one coordinate at a time. Now also $\kappa(r_{k-1})$ locks on r_{k-1}
 - $\gamma_j : (\mathbf{x_1}, \mathbf{0}, \mathbf{x_{k-j+2}}, \dots, \mathbf{x_k}) \to (\mathbf{x_1}, \mathbf{0}, \mathbf{x_{k-j+1}}, \dots, \mathbf{x_k})$. Now $\kappa(r_i)$ locks on r_{k-j}, \dots, r_k .

For j = 2, ..., k - 1.

$\mathbf{x} = (x_1, \ldots, x_1, x_2, \ldots, x_2, \ldots, x_k, \ldots, x_k)$ is reachable

 $T = Pr_1 Pr_2 Vr_1 Pr_3 Vr_2 \dots Pr_k Vr_{k-1} Pr_1 Vr_k Vr_1$

a dipath from $\mathbf{0}$ to \mathbf{x} is composed of the pieces:

- $\gamma_0: \mathbf{0} \to (\mathbf{x_1}, \mathbf{0})$ serially one coordinate at a time. OBS, now hold $\kappa(r_k)$ locks on r_k
- $\gamma_1 : (\mathbf{x_1}, \mathbf{0}) \to (\mathbf{x_1}, \mathbf{0}, \mathbf{x_k})$ one coordinate at a time. Now also $\kappa(r_{k-1})$ locks on r_{k-1}
- $\gamma_j : (\mathbf{x_1}, \mathbf{0}, \mathbf{x_{k-j+2}}, \dots, \mathbf{x_k}) \to (\mathbf{x_1}, \mathbf{0}, \mathbf{x_{k-j+1}}, \dots, \mathbf{x_k})$. Now $\kappa(r_i)$ locks on r_{k-j}, \dots, r_k .

For j = 2, ..., k - 1.

Need: No resource is locked above its capacity along γ . Let $\rho_i(\mathbf{y})$ be the number of locks held on r_i at $\mathbf{y} \in T^M$.

$\mathbf{x} = (x_1, \ldots, x_1, x_2, \ldots, x_2, \ldots, x_k \ldots x_k)$ is reachable

 $T = Pr_1 Pr_2 Vr_1 Pr_3 Vr_2 \dots Pr_k Vr_{k-1} Pr_1 Vr_k Vr_1$

a dipath from $\mathbf{0}$ to \mathbf{x} is composed of the pieces:

- $\gamma_0: \mathbf{0} \to (\mathbf{x_1}, \mathbf{0})$ serially one coordinate at a time. OBS, now hold $\kappa(r_k)$ locks on r_k
- $\gamma_1 : (\mathbf{x_1}, \mathbf{0}) \to (\mathbf{x_1}, \mathbf{0}, \mathbf{x_k})$ one coordinate at a time. Now also $\kappa(r_{k-1})$ locks on r_{k-1}
- $\gamma_j : (\mathbf{x_1}, \mathbf{0}, \mathbf{x_{k-j+2}}, \dots, \mathbf{x_k}) \to (\mathbf{x_1}, \mathbf{0}, \mathbf{x_{k-j+1}}, \dots, \mathbf{x_k})$. Now $\kappa(r_i)$ locks on r_{k-j}, \dots, r_k .

For j = 2, ..., k - 1.

Need: No resource is locked above its capacity along γ . Let $\rho_i(\mathbf{y})$ be the number of locks held on r_i at $\mathbf{y} \in T^M$.

• For γ_0 : $\rho_i(\gamma_0(t)) \leq 1$ for $i \neq k \ \rho_k(\gamma_0(t)) \leq \kappa(r_k)$.

• $\rho_i(\gamma_1(t)) \leq 1$ for $i \neq k-1, k$. $\rho_k(\gamma_1(t)) = k$. $\rho_{k-1}(\gamma_1(t)) \leq \kappa(r_{k-1})$.

• $\rho_i(\gamma_j(t)) \leq 1$ for $i \leq k-j+1$. $\rho_i(\gamma_j(t)) = \kappa(r_i)$ for $i \geq k-j+2$. $\rho_{k-j+1}(\gamma_j(t)) \leq \kappa(r_{k-j+1})$.

Proof of theorem 1

Theorem 1

Let T be a PV thread accessing resources \mathcal{R} with capacity $\kappa : \mathcal{R} \to \mathbb{N}$. Let T^n be n copies of T run in parallel. T^n is deadlock free for all n if and only if T^M is deadlock free, where $M = \sum_{r \in \mathcal{R}} \kappa(r)$.

Prove: If there is a deadlock in T^n , then there is a deadlock in T^M .

Proof of theorem 1

Theorem 1

Let T be a PV thread accessing resources \mathcal{R} with capacity $\kappa : \mathcal{R} \to \mathbb{N}$. Let T^n be n copies of T run in parallel. T^n is deadlock free for all n if and only if T^M is deadlock free, where $M = \sum_{r \in \mathcal{R}} \kappa(r)$.

Prove: If there is a deadlock in T^n , then there is a deadlock in T^M . For n < M: Let $\mathbf{x} = (x_1, \ldots, x_n)$ be a (reachable) deadlock in T^n . I.e. $x_i = Pr_{j(i)}$ and $\rho_{j(i)}(\mathbf{x}) = \kappa(r_{j(i)})$ or $x_i = \top$. Then $\tilde{\mathbf{x}} = (x_1, \ldots, x_n, \top, \ldots, \top) \in T^M$ is a (reachable) deadlock in T^M , since

$$\rho_i(\mathbf{\tilde{x}}) = \rho_i(\mathbf{x})$$
 for all i

Proof of theorem 1

Theorem 1

Let T be a PV thread accessing resources \mathcal{R} with capacity $\kappa : \mathcal{R} \to \mathbb{N}$. Let T^n be n copies of T run in parallel. T^n is deadlock free for all n if and only if T^M is deadlock free, where $M = \sum_{r \in \mathcal{R}} \kappa(r)$.

Prove: If there is a deadlock in T^n , then there is a deadlock in T^M . For n < M: Let $\mathbf{x} = (x_1, \ldots, x_n)$ be a (reachable) deadlock in T^n . I.e. $x_i = Pr_{j(i)}$ and $\rho_{j(i)}(\mathbf{x}) = \kappa(r_{j(i)})$ or $x_i = \top$. Then $\tilde{\mathbf{x}} = (x_1, \ldots, x_n, \top, \ldots, \top) \in T^M$ is a (reachable) deadlock in T^M , since

$$\rho_i(\mathbf{\tilde{x}}) = \rho_i(\mathbf{x})$$
 for all i

 $\mathbf{\tilde{x}}$ is reachable: There is a serial path to $(\mathbf{0}, \top, ..., \top)$. Compose with $(\gamma(t), \top, ..., \top)$, where $\gamma(t) : \mathbf{0} \to \mathbf{x} \in \mathcal{T}^n$

Proof of Theorem 1. n > M

 $\mathbf{x} = (x_1, \dots, x_n)$ is a (reachable) deadlock in T^n . Construct the directed wait for graph $G(\mathbf{x}) = (V, E)$.

$$V = \{x_1, \ldots, x_n\}$$

There is an edge $E(x_i, x_k)$ if $x_i = Pr_j$ and $\rho_j(x_k) = 1$.

Proof of Theorem 1. n > M

 $\mathbf{x} = (x_1, \dots, x_n)$ is a (reachable) deadlock in T^n . Construct the directed wait for graph $G(\mathbf{x}) = (V, E)$.

 $V = \{x_1, \ldots, x_n\}$

There is an edge $E(x_i, x_k)$ if $x_i = Pr_j$ and $\rho_j(x_k) = 1$. Properties of $G(\mathbf{x})$

- If $x_i = \top$, then the vertex x_i is isolated.
- If $x_i = Pr_j$, then the vertex x_i has $\kappa(r_j)$ outgoing edges.
- There are circuits in $G(\mathbf{x})$: Start a walk at a non-isolated vertex. If x_j is the target of an edge, then $x_j \neq \top$, so the walk continues. $G(\mathbf{x})$ is finite, so there is a circuit \mathcal{L} .

Proof of Theorem 1. n > M

 $\mathbf{x} = (x_1, \dots, x_n)$ is a (reachable) deadlock in T^n . Construct the directed wait for graph $G(\mathbf{x}) = (V, E)$.

 $V = \{x_1, \ldots, x_n\}$

There is an edge $E(x_i, x_k)$ if $x_i = Pr_j$ and $\rho_j(x_k) = 1$. Properties of $G(\mathbf{x})$

- If $x_i = \top$, then the vertex x_i is isolated.
- If $x_i = Pr_j$, then the vertex x_i has $\kappa(r_j)$ outgoing edges.
- There are circuits in $G(\mathbf{x})$: Start a walk at a non-isolated vertex. If x_j is the target of an edge, then $x_j \neq \top$, so the walk continues. $G(\mathbf{x})$ is finite, so there is a circuit \mathcal{L} .
- Let $\uparrow \mathcal{L}$ be the vertices reachable from \mathcal{L} . Let $\mathbf{\tilde{x}} = (x_{i_1}, x_{i_2}, \dots, x_{i_m})$ where x_{i_i} are all the vertices in $\uparrow \mathcal{L}$

 $\mathbf{\tilde{x}} = (x_{i_1}, x_{i_2}, \dots, x_{i_m})$ where x_{i_j} are all the vertices in $\uparrow \mathcal{L}$, future of a circuit in the wait-for-graph.

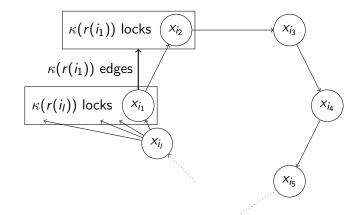
Claim:

• $\tilde{\mathbf{x}}$ is a (reachable) deadlock.

 $\bigcirc m \le M$

Reachability: Let $\gamma : \mathbf{0} \to \mathbf{x}$ in T^n . The restriction to $Ti_1, \ldots Ti_m$ is a dipath $\mathbf{0} \to \mathbf{\tilde{x}}$

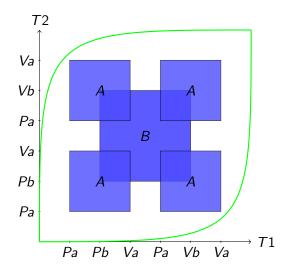
The restricted Wait for Graph - future of the loop



 $x_{i_j} \neq \top$, so $x_{i_j} = P(r(i_j))$. In $G(\mathbf{x})$, $x_{i_j} = P(r(i_j))$ had $\kappa(r(i_j))$ outgoing edges. It still has in $G(\tilde{\mathbf{x}})$, since $\uparrow \mathcal{L}$ contains all targets. Hence, $\tilde{\mathbf{x}}$ is a deadlock.

- In G(x), all the m vertices are targets. Hence, they hold a lock on a resource.
- The maximal number of locks at an allowed state is $M = \sum_{r \in \mathcal{R}} \kappa(r)$
- Hence, there are at most *M* vertices in *G*(x̃) (Less, if some x_i hold a lock on more than one resource.)

Now to something different: Serializability



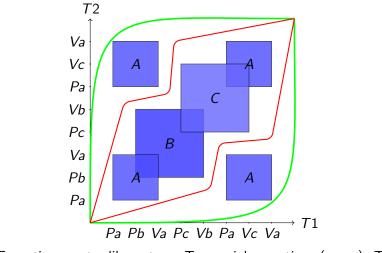
Two executions up to dihomotopy. Equivalent to the serial executions T1.T2 and T2.T1

Lisbeth Fajstrup (AAU)

Cut-off theorems for deadlocks and serializabi

Serializability

T = PaPbVaPcVbPaVcVa is not serializable.



4 Executions up to dihomotopy. Two serial executions (green). Two non-serializable executions (red).

Serializability - a cut-off theorem

Definition

T1|T2...|Tn is serializable if all execution paths are dihomotopic to a serial execution Ti1.Ti2....Tin.

Theorem 3

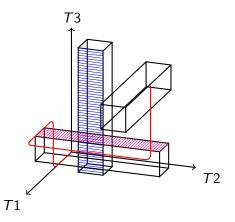
Let T be a PV-thread accessing resources \mathcal{R} all of capacity 1. Let T^n be n copies of T run in parallel. Then T^n is serializable if and only is T^2 is serializable.

In general studying pairwise interaction is not enough

Example

Let T1 = PcVcPaVa, T2 = PcVcPbVb, T3 = PaVaPbVb,

Each pair *Ti*, *Tj* shares one resource.

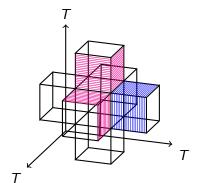


Schedules as in Raussens Trace algorithm

When $\kappa = 1$

- All conflict *n*-rectangles are $\times_{k=1}^{n} I_k$, $I_k = I$ except for two directions $I_i =]a_i, b_i[, I_j =]a_j, b_j[$
- One choice at a given such *n*-rectangle "above or below" in the *ij*-plane *i* waits or *j* waits.

 $T = PaVa, T^3$

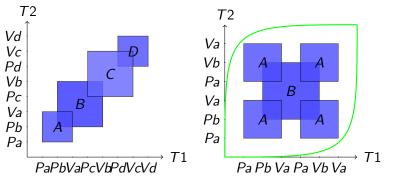


3! serial executions, pairwise inequivalent.

T^2 serializability

- If choice at one rectangle implies choice at all other rectangles below all or above all rectangles
- Equivalently: Only schedules $J = (\{1\}, \{1\}, \dots, \{1\})$ and $J = (\{2\}, \{2\}, \dots, \{2\})$ are allowed.
- Equivalently: The closure of the forbidden area under adding unreachable and unsafe areas is connected.

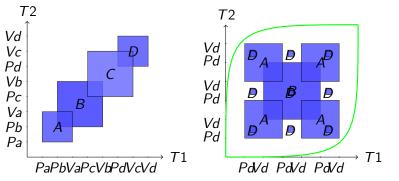
OBS: Two phase locking is not required.



T^2 serializability

- If choice at one rectangle implies choice at all other rectangles below all or above all rectangles
- Equivalently: Only schedules $J = (\{1\}, \{1\}, \dots, \{1\})$ and $J = (\{2\}, \{2\}, \dots, \{2\})$ are allowed.
- Equivalently: The closure of the forbidden area under adding unreachable and unsafe areas is connected.

OBS: Two phase locking is not required.



- If T is non-trivial, all the n! serial executions are non-equivalent, since
 - They have different schedules wrt. the $\frac{n \cdot (n-1)}{2}$ *n*-rectangles induced by just one *PV*-interval.
 - Equivalently: Their projections to at least one of the T^2 are non-equivalent.

Proof of Theorem 3

Suppose T^2 is serializable, then

- Let]a^r, b^r[correspond to a lock Pr, Vr. There are n! schedules for the rectangles {×ⁿ_{k=1}I_k, I_k =]a^r, b^r[for k = i, j, i < j ∈ [1 : n]} corresponding to the serial executions.</p>
- Pix i, j There are two schedules i last for all or j last for all the rectangles {I × I ×···×]a^r_s, b^r_s[×I···×]a^r_t, b^r_t[×I ×···×I} where]a^r_s, b^r_s[×]a^r_t, b^r_t[are forbidden rectangles in T²
- Oboose one of the n! schedules for 1); that fixes all schedules in 2). Hence, there are n! inequivalent schedules.
- O These are all realized by serial executions.

Serializability for $\kappa > 1$

- There are non-serializable executions.
- All serial executions are equivalent (all boundary 2-cells are allowed)
- The scheduling algorithm calculates components of the trace space.
- More than one component \Leftrightarrow non-serializable.

More to do

- Serializability for $\kappa > 1$ guess: There is a homological obstruction . This needs to be described specifically for the symmetric case.
- Cut-off for other properties linearizability?