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Cut-Off Theorems

General
Property P holds for all n € N if and only P holds for n < M J

Think of n as a dimension.

Here: Given thread T, T" means n copies of T run in parallel.

The property P is deadlock free in one theorem and serializable in the
other.
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PV -programs - controlling concurrency through locks

@ A set of shared resources R - memory, printers,...

@ A capacity function k : R — N.

PV programs p are defined by the grammar

pi=P,| Valpp|plplp+pl|p*

P, is a request to access the resource a, if granted acces, lock it. V,
releases the resource.

A program without the parallel operator is a thread.
Resource r may be accessed by at most x(r) threads at a time.

At a final point, the program has released all resources.

At an initial point, no resources are locked
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Geometrically

One thread is represented by a graph. n threads in parallel are represented
by a product of n graphs with “holes” where a resource is locked above its
capacity.
Tl1=T2=Pa.Pb.Va.Pa.Vb.Va ~r=1
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An execution is a directed path
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Deadlock - no directed paths leave the point

T2

Va
Vb
Pa
Va
Pb

Pa

Pa Pb Va Pa Vb Va T

Lisbeth Fajstrup (AAU) Cut-off theorems for deadlocks and serializabi



Definition

A state x = (x1,...,x5) € T1 x T2 X --- X Tnis a deadlock if
@ The only dipaths starting in x are constant.
@ X is reachable: There is a dipath from 0 to x
@ x # T - not all Ti have finished

If x is a deadlock, then x; = T or x; = Pr(i) and x(r(i)) other threads
hold a lock on r(i) at x
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A cut-off theorem for deadlocks

Theorem 1
Let T be a PV thread accessing resources R with capacity x : R — N.
Let T" be n copies of T run in parallel.

T" is deadlock free for all n if and only if T™ is deadlock free, where
M = ZreRlﬁ}(r).
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The bound M is sharp.

Theorem 2
Given R = {n,..., rx} with capacity x : R — N, the thread
T = PriProViri Pr3Virs . .. Pri Virk_1 Pry Vri Vi satisfies:
@ There is a deadlock in TM (and hence for all n > M) where
M = ZreRm(r).
@ There are no deadlocks in T" for n < M |
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The bound M is sharp.

Theorem 2

Given R = {n,..., rx} with capacity x : R — N, the thread
T = PriProViriPr3Vrs . .. Pri Vir_1 Pr Viri Vi satisfies:

@ There is a deadlock in TM (and hence for all n > M) where
M = zreR/{(r).

@ There are no deadlocks in T" for n < M

v

Proof: The deadlock is x = (x1,...,X1,X2, ..., X2, ..., Xk - . . Xx) Where for
i #1, x; = Pr; and x; is repeated r(rj_1) times. x is the last Pry and is
repeated k(ry) times. All resources r are locked x(r) times.

Hence x is a deadlock and # T. (Need to check reachability and no
deadlocks in lower dimensions)
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Example. When k =1

x = (x1,x2,...,xx) and M = k:
@ T1 requests r; and has a lock on ry
@ Ti requests r; and has a lock on rj;
There are no deadlocks in T" for n < M: If y is a deadlock, then there is
a yj1 = Pr(il1) and another y;> with a lock on r(i1), so yj» = Pr(il+1)
(or the last P(rl) if r(il) = ry.
Hence, y is a permutation of (x, T, T,..., T).
Similarly for general .
Still need to see that x is reachable.
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Example
T = PaPbVaPcVbPaVcVa, k = 1. T2 has a deadlock at (6,2, 4)
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X=(x1,...,X1,X0, ..., X2,...,Xk-..Xx) is reachable

T = Pr1 Pr2 Vr1 Pr3 Vr2 c. Prk Vrk_lPrl Vrk Vr1
a dipath from 0 to x is composed of the pieces:

@ 70 : 0 — (x1,0) serially - one coordinate at a time. OBS, now hold
k(rk) locks on ry
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X=(x1,...,X1,X0, ..., X2,...,Xk-..Xx) is reachable

T = Pr1 Pr2 Vr1 PI’3 Vr2 c. Prk Vrk_lPrl Vrk Vr1
a dipath from 0 to x is composed of the pieces:

@ 70 : 0 — (x1,0) serially - one coordinate at a time. OBS, now hold
k(rk) locks on ry

@ 71 : (x1,0) — (x1,0,xk) one coordinate at a time. Now also x(rk—_1)
locks on ri_1

Lisbeth Fajstrup (AAU) Cut-off theorems for deadlocks and serializabi July 2013 12 /28



X=(x1,...,X1,X0, ..., X2,...,Xk-..Xx) is reachable

T = Pr1 Pr2 Vr1 Pr3 Vr2 c. Prk Vrk_lPrl Vrk Vr1
a dipath from 0 to x is composed of the pieces:

@ 70 : 0 — (x1,0) serially - one coordinate at a time. OBS, now hold
k(rk) locks on ry

@ 71 :(x1,0) — (x1,0,xk) one coordinate at a time. Now also x(rk—_1)
locks on ri_1

@ 7 (X], O,Xk_j+2, N ,Xk) — (X], 07xk—j+17 . ,Xk). Now /ﬁ(l’,‘) locks
on rg—j,..., k.

Forj=2,...,k—1.
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X=(x1,...,X1,X0, ..., X2,...,Xk-..Xx) is reachable
T = Pr1Pr2 VI’1PI’3 Vr2 c. Prk Vrk_lPrl Vrk Vr1
a dipath from 0 to x is composed of the pieces:

@ 70 : 0 — (x1,0) serially - one coordinate at a time. OBS, now hold
k(rk) locks on ry

@ 71 :(x1,0) — (x1, 0, xk) one coordinate at a time. Now also x(rk—_1)
locks on ri_1
® ;i (x1,0,Xk—j+2,- -, %K) = (X1,0, X—j11,...,Xk). Now r(r;) locks
on rg—j,..., k.
Forj=2,...,k—1.
Need: No resource is locked above its capacity along 7. Let p;(y) be the
number of locks held on r; aty € TM,
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X=(x1,...,X1,X0, ..., X2,...,Xk...Xg) is reachable
T = Pr1Pr2 VI’1PI’3 Vr2 c. Prk Vrk_lPrl Vrk Vr1
a dipath from 0 to x is composed of the pieces:
@ 70 : 0 — (x1,0) serially - one coordinate at a time. OBS, now hold
k(rk) locks on ry
@ 71 :(x1,0) — (x1, 0, xk) one coordinate at a time. Now also x(rk—_1)
locks on ri_1
® ;i (x1,0,Xk—j+2,- -, %K) = (X1,0, X—j11,...,Xk). Now r(r;) locks
on rg—j,..., k.
Forj=2,... k—1.
Need: No resource is locked above its capacity along ~y. Let p;(y) be the
number of locks held on r; aty € TV,
o For q0: pi(70(t)) < 1 for i # k pi(vo(t)) < r(ri).
o pi(n(6) < 1fori# k-1 k pr(n(6) = k. pra(n(6)) < w(re_1).
o pi(vj(t)) <1fori< k—j+1. pi(v(t)) =r(r)fori>k—j+2.
Pr—j+1(74(1)) < K(r—jt1)-
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Proof of theorem 1

Theorem 1
Let T be a PV thread accessing resources R with capacity x : R — N.
Let T" be n copies of T run in parallel.

T" is deadlock free for all n if and only if T™ is deadlock free, where
M = zreRlﬁ}(r).

Prove: If there is a deadlock in T, then there is a deadlock in TM.
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Proof of theorem 1

Theorem 1

Let T be a PV thread accessing resources R with capacity < : R — N.
Let T" be n copies of T run in parallel.

T" is deadlock free for all n if and only if T™ is deadlock free, where
M = ZreRm(r).

Prove: If there is a deadlock in T", then there is a deadlock in TM.
For n < M: Let x = (x1,...,x,) be a (reachable) deadlock in T".

le. x;i = Prjjy and pj(iy(x) = w(rj(i)) or xi = T.

Then % = (x1,...,%n, T,..., T) € TMis a (reachable) deadlock in T™,
since

pi(X) = pi(x) for all i
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Proof of theorem 1

Theorem 1

Let T be a PV thread accessing resources R with capacity < : R — N.
Let T" be n copies of T run in parallel.

T" is deadlock free for all n if and only if T™ is deadlock free, where
M = ZreRn(r).

Prove: If there is a deadlock in T", then there is a deadlock in TM.
For n < M: Let x = (x1,...,x,) be a (reachable) deadlock in T".
le. x;i = Prjjy and pj(iy(x) = w(rj(i)) or xi = T.
Then % = (x1,...,%n, T,..., T) € TMis a (reachable) deadlock in T™,
since

pi(X) = pi(x) for all i

X is reachable: There is a serial path to (0, T,..., T). Compose with
(v(t), T,..., T), where v(t) : 0 > x & T"
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Proof of Theorem 1. n > M

x = (x1,...,X%n) is a (reachable) deadlock in T".
Construct the directed wait for graph G(x) = (V, E).

V={x1,...,xn}

There is an edge E(x;, x«) if xi = Prj and pj(xx) = 1.
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Proof of Theorem 1. n > M

x = (x1,...,xn) is a (reachable) deadlock in T".
Construct the directed wait for graph G(x) = (V, E).

V= {le"'axn}
There is an edge E(x;, x«) if xi = Prj and pj(xx) = 1.
Properties of G(x)
o If x; = T, then the vertex x; is isolated.
o If x; = Prj, then the vertex x; has k(r;) outgoing edges.

@ There are circuits in G(x): Start a walk at a non-isolated vertex. If x;
is the target of an edge, then x; # T, so the walk continues. G(x) is
finite, so there is a circuit L.
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Proof of Theorem 1. n > M

x = (x1,...,xn) is a (reachable) deadlock in T".
Construct the directed wait for graph G(x) = (V, E).

V={x1,...,%n}
There is an edge E(x;, x«) if xi = Prj and pj(xx) = 1.
Properties of G(x)
o If x; = T, then the vertex x; is isolated.
o If x; = Prj, then the vertex x; has k(r;) outgoing edges.

@ There are circuits in G(x): Start a walk at a non-isolated vertex. If x;
is the target of an edge, then x; # T, so the walk continues. G(x) is
finite, so there is a circuit L.

Let T £ be the vertices reachable from L.
Let X = (xi, Xy, - - -, Xi,,) Where x;. are all the vertices in 1 £
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% = (Xiy; Xiy, - - - » Xi,,) Where x; are all the vertices in 1 £, future of a circuit
in the wait-for-graph.

Claim:
@ X is a (reachable) deadlock.
Q@ m< M

Reachability: Let v:0 — x in T". The restriction to Tiy,... Tip is a
dipath 0 — X
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The restricted Wait for Graph - future of the loop

k(r(i1)) locks @

k(r(i1)) edges

k(r(ir)) locks ( Xiy

SO K

xi; # T, 50 x;; = P(r(ij)). In G(x), x; = P(r(i;)) had x(r(ij)) outgoing
edges. It still has in G(X), since 1 L contains all targets.
Hence, X is a deadlock.
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@ In G(X), all the m vertices are targets. Hence, they hold a lock on a
resource.

@ The maximal number of locks at an allowed state is M = X ,crk(r)

@ Hence, there are at most M vertices in G(X) (Less, if some x; hold a
lock on more than one resource.)
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Now to something different: Serializability

T2

Va
Vb

Pa

Va
Pb

Pa

Pa Pb Va Pa Vb Va T

Two executions up to dihomotopy. Equivalent to the serial executions
T1.T2and T2.T1
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Serializability
T = PaPbVaPcVbPaVcVa is not serializable.

T2

Va
Pa

Vb
Pc

Va
Pa
Pa Pb Va Pc Vb Pa Vc Va

4 Executions up to dihomotopy. Two serial executions (green). Two
non-serializable executions (red).

T1
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Serializability - a cut-off theorem

Definition
T1|T2...|Tnis serializable if all execution paths are dihomotopic to a
serial execution Til1.Ti2.... Tin.

Theorem 3

Let T be a PV-thread accessing resources R all of capacity 1.
Let 7" be n copies of T run in parallel. Then T" is serializable if and only
is T2 is serializable.

v
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In general studying pairwise interaction is not enough
Example

Let T1 = PcVcPaVa, T2 = PcVcPbVb, T3 = PaVaPbVb,
Each pair Ti, Tj shares one resource.

T3
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Schedules as in Raussens Trace algorithm

When k =1

@ All conflict n-rectangles are x}_;/lx, Ix = | except for two directions
li =lai, bil, 1j =laj, by

@ One choice at a given such n-rectangle “above or below” in the
ij-plane - i waits or j waits.
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T = PaVa, T3

|'A

3! serial executions, pairwise inequivalent.
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T? serializability
@ If choice at one rectangle implies choice at all other rectangles -
below all or above all rectangles
e Equivalently: Only schedules J = ({1},{1},...,{1}) and
J=({2},{2},...,{2}) are allowed.
@ Equivalently: The closure of the forbidden area under adding
unreachable and unsafe areas is connected.

OBS: Two phase locking is not required.

T2 T2

vd

Ve Va
Pd Vb
Vb Pa
Pc Va
Va

Ph Pb
Pa Pa

T1 T1
PaPbVaPcVhPdVcVvd Pa PbVa PaVbVa
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T? serializability
@ If choice at one rectangle implies choice at all other rectangles -
below all or above all rectangles
e Equivalently: Only schedules J = ({1},{1},...,{1}) and
J=({2},{2},...,{2}) are allowed.
@ Equivalently: The closure of the forbidden area under adding
unreachable and unsafe areas is connected.

OBS: Two phase locking is not required.

T2 T2

vd Vd
Ve

Pd Pd
Vb Vd
Pc Pd
Va Vd
Pb

Pa Pd

T1 T1
PaPbVaPcVbPdVeVd Pd/d Pd/d Pd/d
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Tn

If T is non-trivial, all the n! serial executions are non-equivalent, since

@ They have different schedules wrt. the M

by just one PV-interval.

n-rectangles induced

e Equivalently: Their projections to at least one of the T2 are

non-equivalent.
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Proof of Theorem 3

Suppose T2 is serializable, then

Q Let ]a", b"[ correspond to a lock Pr, Vir. There are n! schedules for
the rectangles {x}_;/k, lx =|a", b"[for k =i,j,i <j€[l:n]}-
corresponding to the serial executions.

@ Fix i,j There are two schedules - / last for all or j last for all the
rectangles {/ x | x ---x]al, bL[x[---x]af, bi[x] x -+ x I} where
]al, bl[x]ark, bi[ are forbidden rectangles in T2

© Choose one of the n! schedules for 1); that fixes all schedules in 2).
Hence, there are n! inequivalent schedules.

© These are all realized by serial executions.
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Serializability for k > 1

There are non-serializable executions.
All serial executions are equivalent (all boundary 2-cells are allowed)

The scheduling algorithm calculates components of the trace space.

More than one component < non-serializable.
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More to do

@ Serializability for k > 1 - guess: There is a homological obstruction .
This needs to be described specifically for the symmetric case.

o Cut-off for other properties - linearizability?
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