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Mount Everest (8,848 m)
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Mountain
1 Mount Everest = 8,848
2 K2 | 8,611
3 Kangchenjunga | 8,586
4 Lhotse @ 8,516
5 Makalu @ 8,485
6 Cho Oyu | 8,188
7 Dhaulagiri I | 8,167
8 Manaslu | 8,163
9 Nanga Parbat = 8,126
10 Annapurna I = 8,091

Source: Wikipedia
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Lhotse (8,516 m) Mount Everest (8,848 m)
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Mountain
1 Mount Everest = 8,848
2 K2 | 8,611
3 Kangchenjunga | 8,586
4 Lhotse = 8,516
5 Makalu @ 8,485
6 Cho Oyu | 8,188
7 Dhaulagiri I | 8,167
8 Manaslu | 8,163
9 Nanga Parbat = 8,126
10 Annapurna I = 8,091

Source: Wikipedia
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Mountain
1 Mount Everest = 8,848
2 K2 | 8,611
3 Kangchenjunga | 8,586
4 Lhotse = 8,516
5 Makalu @ 8,485
6 Cho Oyu | 8,188
7 Dhaulagiri I | 8,167
8 Manaslu | 8,163
9 Nanga Parbat = 8,126
10 Annapurna I = 8,091

Source: Wikipedia




Topographic Prominence

The prominence of a peak is the height of the peak’'s summit above the
lowest contour line encircling it and no higher summit.




Topographic Prominence

The prominence of a peak is the height of the peak’'s summit above the
lowest contour line encircling it and no higher summit.

prominence = persistence

Maximum
O

Saddle

Persistence diagram records for each peak its value on the vertical axis,
and the value of the saddle where it merges into a higher peak on the
horizontal axis.



Persistence Diagram of Elevation on Earth
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Persistence Diagram of Elevation on Earth

/

# Mount Everest.

) Lhotse Shar

Highest mountains with prominence > 500 m.

Rank Mountain | Height | Prominence
2800 1 Mount Everest | 8,848 8,848
2 K2 | 8,611 4,017
3 Kangchenjunga | 8,586 3,922
4 Lhotse | 8,516 610
5 Makalu | 8,485 2,386
6 Cho Oyu | 8,188 2,340
7 Dhaulagiri I | 8,167 3,357
500 8 Manaslu | 8,163 3,092
9 Nanga Parbat | 8,126 4,608
b e Saddle 10 Annapurna I | 8,091 2,984




Persistence Diagram of Elevation on Earth

g K2 Kangchenjunga Lhotse//KﬂountainS with highest prominence.
§ Rank Mountain | Height | Highest point of | Prominence
C>t<Jg;; 1 Mount Everest | 8,848 World 8,848
= | 2 Aconcagua | 6,962 Americas 6,962
3 Mount McKinley | 6,194 | North America 6,138
4 Mount Kilimanjaro | 5,895 Africa 5,882
5 Pico Cristbal Coln | 5,700 in Colombia 5,509
6 Mount Logan | 5,959 Canada 5,250
7 Pico de Orizaba | 5,636 Mexico 4,922
8 Vinson Massif | 4,892 Antarctica 4,892
9 Puncak Jaya | 4,884 New Guinea 4,884
10 Mount Elbrus | 5,642 FEurope 4,741

vli\;iount Whitney ] ] ] .
Highest mountains with prominence > 500 m.

Rank Mountain | Height | Prominence
2800 1 Mount Everest | 8,848 8,848
2 K2 | 8,611 4,017
3 Kangchenjunga | 8,586 3,922
4 Lhotse | 8,516 610
5 Makalu | 8,485 2,386
6 Cho Oyu | 8,188 2,340
b 7 Dhaulagiri I | 8,167 3,357
500 8 Manaslu | 8,163 3,092
% £ 9 Nanga Parbat | 8,126 4,608
.................................. Saddle . 10 |  Annapurnal | 8,091 2,984




Motivation

Natural phenomena modeled as scalar functions, f : X — R
e density of galaxies
e rate of fuel consumption during combustion encodes a flame

e geometry of a material encoded in its distance function

To analyze such data, need to detect and extract salient features;
compute global statistics.

opological features in scientific data:

(Source: CCSE, CCC, SCG at LBNL.)
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Persistence is defined with respect to any scalar function f : X — R.

if fis... persistent maxima capture significant ...
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Functions

Persistence is defined with respect to any scalar function f : X — R.

if fis...

elevation on Earth

density of particles

grayscale image of cells

distance to a shape

persistent maxima capture significant ...

e s mountains

B RRREERE R clusters

e.g., halos in astrophysical data
- nucleii of cells
i,”'kpockets within the sha pe

e.g., voids in a subsurface rock
formation, or in a protein
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Merge Trees

Function: f: X—=R
Sublevel set: X, = f~!(—o00,a]

Merge tree = record connectivity of the components of sublevel sets
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Merge Trees

Function: f: X—=R
Sublevel set: X, = f~!(—o00,a]

Merge tree = record connectivity of the components of sublevel sets

Death

Birth
>

Stability Theorem (for persistence diagrams):

dg(Dgm(f),Dgm(g)) < ||f — 9||co-



Interleaving Distance

between Merge Trees



Interleaving Distance
Trees Tf and Tg.

: Ty >R 1% shift map in Ty
Ty — R 3¢ shift map in T,

N KH)

(Inclusion of component F; into
a component of F42..)
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Interleaving Distance

Trees Ty and T .
Ty —T f;rjf%]R i%¢  shift map in Ty
g

- g
. m m ) . - m
BE Ty — Ty : T, > R 7°¢  shift map in T

(Inclusion of component F; into
a component of F42..)

o and 3¢ are e-compatible.

g(a(x)) = f(z) +e f(B8°(x)) = gla) + ¢
J

660&6 :?:26




Interleaving Distance

Trees Ty and T .

di(Ts,T,) = inf{e | there are e-compatible maps a® and ¢}

(Inclusion of component F; into
a component of F42..)

o and 3¢ are e-compatible.

AN

g(a”(z)) = f(z) + ¢ f(5°(x) = §(x) + &
J

680&8 :?:26
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Shifted saddle: dy = ¢.




Examples

Shifted saddle: dj = ¢. Shifted leaf: dj = €.




Examples

Shifted saddle: dj = ¢. Shifted leaf: dj = €.




d; Is a metric

1. dy(T, T) = 0;
2. di(Ty, Ty) = di(Ty, Ty);
3. di(Ty, T3) < di(Ty, 7o) + di(T2, T3).

1. o' =B =1d;
2. symmetry of the definition;

3. a3 = @12 © (e B13 = B2 0 Pas.
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Stability

Stability Theorem: d;(T¢, T,) < || f — 9|/

f_l(—OO, CL]
9

_1(_Ooaa]

k.
Fa C Ga—l—s C Fa—|—2€- Ga

The inclusion maps a component of F, into a component of GG, .,
and vice versa. Call these maps a® and 5°.




Stabilit

Stability Theorem: d;(T¢, T,) < || f — 9|/

Let e = ||f — 9| Fy = f~'(—00,d]
Fo C Ga—l—s C Fa—|—2€- Go = g_l(—oo,a]

The inclusion maps a component of F, into a component of GG, .,
and vice versa. Call these maps a® and 5°.

Claim: o and 5° are e-compatible.
g(af(x)) = f(x) +¢ f(5°(x) = g(x) + ¢
J

580048:i28 &80562 -2€



Bottleneck vs. Interleaving Distance

dB(ngf,ngg) =0 dI(Tf,Tg) = >0

Death




Bottleneck vs. Interleaving Distance

Persistence modules: {F,,i? : F, — Fy},{Gq4, 52 : Gy — Gy}
e-interleaved:
if there are maps ¢® : F,, = G4 and ¥ : G, = G,
such that their compositions commute with i® and j°.
Fq FCL—|—2€ Fb—l—s

Gate Gy,

Stability Theorem [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot]:
If two persistence modules are e-interleaved, then their persistence

diagrams are e-close in the bottleneck distance.
(Generalizes ordinary stability theorem for persistence diagrams if

F, =H(f7!(—o00,a]) and G4 = H(g7 (=00, al).)



Bottleneck vs. Interleaving Distance

Persistence modules: {F,,i* : F, — F;,},{G,, 5% : G, — Gy }.

e-interleaved:
if there are maps ¢® : F,, = G4 and ¥ : G, = G,
such that their compositions commute with i® and j°.
Fy Fotoc Fyye

Gate Gy,

Stability Theorem [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot]:
If two persistence modules are e-interleaved, then their persistence

diagrams are e-close in the bottleneck distance.
(Generallzes ordinary stability theorem for persistence diagrams if

Fo = H(f~(—00,a]) and G4 = H(g~ " (—00, a]).)
Corollary' dB(ngo( ) ngo(g)) < di(f,9).
Proof: of :T; — T, = ¢*: Ho(f ' (—00,a]) = Ho(g ' (—00,a + ¢])

6 Tg%Tfiw : Ho(g ( )%Hg(f_l(—OO,a—FE])



Parallel Computation
of Merge Trees



Sample Queries

e Cosmological simulations of the universe.
Compare statistical properties to observations,

distribution of mass of heavy objects. -

Detect heavy objects as persistent maxima,
but how to integrate their mass in parallel?

e Extract a component of the levelset that contains a specific point.

(E.g., when studying the consumption of hydrogen during combustion.)

FL(f (=)

e The datasets are large: 1,024% — 4,096 per timestep.



Sample Queries

e Cosmological simulations of the universe.

0

Compare statistical properties to observations -
distribution of mass of heavy objects. B

log(count/volume
|
(o]

|
o]

Detect heavy objects as persistent maxima,

—12

but how to integrate their mass in parallel? T N T

log(Mg/h)

e Extract a component of the levelset that contains a specific point.

(E.g., when studying the consumption of hydrogen during combustion.)

FL(f (=)

e The datasets are large: 1,024% — 4,096 per timestep.



Component volume quer

Given a point x € X, find the volume of the component of the sublevel set
f~1(—00, al] that contains .

(e.g., determine the

p volume of a cluster)

e Brute-force solution is too slow when the data is distributed among
many processors;

e |t makes even less sense if one is interested in a histogram of
volumes as we vary the sublevelset thresholds.



Merge Trees: Construction

Function: f:K—R

K i1s a triangulation;
f is defined on the vertices and piecewise-linearly interpolated.
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if FIND(u) # FIND(v) then
set v as the parent of v in T
UNION (u, v)




Merge Trees: Construction

Function: f:K—R

K i1s a triangulation;
f is defined on the vertices and piecewise-linearly interpolated.

Merge tree construction:

sort vertices of K by f
for each vertex v in sorted order do /
add v
for each edge uv with f(u) < f(v) do
if FIND(u) # FIND(v) then
set v as the parent of v in T
UNION (u, v)

Kruskal's algorithm

Connection to MST?
e Best known deterministic algorithm for MST: O(ma(m,n)) [Chazelle '00]

e Lower-bound for merge trees: Q(nlogn). n = |vertices|
m = |edges|



Existing Parallel Approach  [Pascucci cole-MeLaughiin 03

L2

T3

L1

T(U)

unv

e Hierarchically partition the domain
(e.g., a quad- or oct-tree for regular grids).

e On each processor P;, compute the merge tree m

Ty, of the function restricted to the set U;.

e Merge trees in pairs, until we get the full merge tree. I
(In other words, perform a binary reduction.)

Problem: The reduction is top-heavy. At the end,
a single processor has to assemble the entire merge tree.
The procedure does not scale.




Solution I: Global Simplified

Data is always corrupted by noise.
Typical analysis pipeline: compute a descriptor; simplify the descriptor;
use the simplified descriptor for analysis.

For merge trees, simplification means pruning short banches.
Given € > 0, remove subtrees of depth less than ¢.

Death

Birth
>
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Interpretation:
Given f: X — R, thereis g : X — R, with ||f — g||cc < €, such that g
has the fewest extrema. Compute the merge tree of g, rather than f.



Solution I: Global Simplified

Data is always corrupted by noise.

compute the simplified tree directly

For merge trees, simplification means pruning short banches.
Given € > 0, remove subtrees of depth less than ¢.

Death

Birth
>

Interpretation:
Given f: X — R, thereis g : X — R, with ||f — g||cc < €, such that g
has the fewest extrema. Compute the merge tree of g, rather than f.
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Interleaved Computation

Theorem: once a subtree lies in the interior of a region,
It does not change in the merging process.

low persistence + interior nodes only

= simplify away
= simplification and merging can be interleaved \//‘z\



Interleaved Computation

Theorem: once a subtree lies in the interior of a region,
It does not change in the merging process.

low persistence + interior nodes only

= simplify away
= simplification and merging can be interleaved \//‘z\
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Timines (using 512 processors)
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Timines (using 512 processors)

25} Global simplified = Global simplified mm=m
150 |
20 |
[%2] [%2]
- 15| T 100}
c c
3 V 3 Al
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50 |
0 0 I I I l
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‘ 2,000 w
Global simplified m==m Global simplified s
600 |
1,500 |
é 400 §
: C g 1,000 | A2
(9p] 2]

200 |

500I
o IIIIII Illll

le-10 le- 0 2ell 4ell 8ell lel2 3el2 6el2 lel3
3 . . . .
All the experiments performed at the National Energy Research A2 (20482)' astrophy§|cs s.|mulat.|on
Scientific Computing Center (NERSC) on a Cray XE6 with ¢ (1024 > 2048):  combustion simulation
Al (1024°%): astrophysics simulation

24-core AMD 2.1GHz processors per node, sharing 32GB memory. y (512°): rotational angiography scan
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e have to pick the simplification threshold € in advance (chicken-and-egg);

e one monolithic tree in the end (difficult to process).
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e Many ways to do this, e.g., could store for every local vertex its
parent in the global tree. (Terrible for analysis.)

e Focus on analysis: distribute the tree to minimize communication
when post-processing.



Solution Il: Local-Global Representation

Limitations of the global simplified scheme:
e have to pick the simplification threshold € in advance (chicken-and-egg);

e one monolithic tree in the end (difficult to process).

Goal: distribute the tree representation.

e Many ways to do this, e.g., could store for every local vertex its
parent in the global tree. (Terrible for analysis.)

e Focus on analysis: distribute the tree to minimize communication
when post-processing.

—n

Each processor records how its local vertices fit
into the global tree.

(Each branch is a connected component, \

so we record for every local vertex what \
global components it belongs to for all /'< 2\
/ AN

function values.)



Local-Global Representation

Vertex colors represent domain regions.
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Local-Global Representation

/{X J<\'\

Vertex colors represent domain regions.




Analvsis

Example query: compute the volumes of the sublevel set components
that contain point .

On the processor responsible for U > «:

e |dentify the sequence of minima and
saddles mi,S1,M2,S2,1M3,S3,...

S3
e broadcast this sequence to the rest $9
of the processors s1
. X
e ecach processor can independently mi

identify its contribution to each one ms
of these sublevel set components



Spa rse Exchan @ sparsification and merging can be interleaved

Each processor maintains the tree Once a subtree consists only of
sparsified with respect to its local Interior nodes, and its not reachable
domain, and the boundary of its from local or boundary vertices, we
current global domain. can remove It.
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Timines (using 512 processors)

25 | Global simplified =
Local—global
20 |
-é’ 15|
S V
)
[9p]
10 }
0
1 5 10 25 50 75 100
Global simplified mmmm
600 | Local-global
é 400
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)
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le-10 le-

Almost as fast to compute as the most

aggressive simplification, but doesn't

lose information.
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astrophysics simulation
rotational angiography scan
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Tree

rowth

(

using 512 processors

Input: 1,024° grid of particle density (astrophysics data).

Largest tree size during each iteration on any processor.

107 E

106 E

Nodes

10° E

10% |

L—-G s
lel3 mmm
6el2 mmm
4el2

3el2 mumm
2e12 mmm
1el2 mm
8ell mmmm

Initial 1 2

-
-

lteration

3 0 Final

End result: full merge tree (no information loss), but each processor has

to store only a small representation.



Results

Final tree sizes as we increase the
number of processors (these serve
as the input to the analysis
routines):

Nodes

215

A2 ——
C —o—
Al —m—

el

128 256 512 1024
Number of processors

2048




Results

A2 ——
C —o—
Al —m—

Final tree sizes as we increase the )19 Ve
number of processors (these serve

g
[] [ _O
as the input to the analysis S
routines): 213
211
128 256 512 1024 2048
Number of processors
A2 —0—
3
10 C
] ] Al —m—
Times to compute this V—e—
representation: g 12
5
V)]
10!
128 256 512 1024 2048

Number of processors
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Analysis routine: levelset component extraction

1
Problem: AR

User chooses a point «,
extract component of
f~1(f(=)) that contains z.
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Input: 5127 grids, medical images _
Vislt (state of the art visualization software) §
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extracts the components and then labels
them.
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Contour Trees
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Distance function to {A, B, C'}. Contour tree of the function.

f: X—=R

Two points are equivalent, x ~ vy, if f(x) = f(y) and they belong to the same
component of the levelset f~'(f(x)).

Reeb graph = quotient space X/~ = continuously contract contours to points

If X is simply connected, Reeb graph is called a contour tree.

[Carr, Snoeyink, Axen '03]:
compute contour tree from merge trees of f and —f in linear time.

Merge trees of f and —f contain the information that we want.
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Problem: Given a point x, extract component of f~'(f(x)) that contains x.

To extract the full contour, intersect
every maximal simplex with the levelset. o fHa)

But we want to only report the
component that contains z. ‘

Idea: Local—global represenation determines a globally unique component ID
without any communication. On simply connected domains, sub- and super-level
sets components intersect In at most one component.

Algorithm:

e Processor responsible for x, identifies the minimum and the maximum
of the sub- and super-levelset components that contain .
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e Report only those simplices o that /< /2\ AN
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have a vertex in each component.
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Analysis routine: levelset component extraction

1
Problem: AR

User chooses a point «,
extract component of
f~1(f(=)) that contains z.

With local—-global representation, this problem can be solved without communication:
each processor finds its contribution to the component; sufficient to broadcast just two vertices.
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Analysis routine: levelset component extraction

—1
Problem: (@)

User chooses a point «,
extract component of
f~1(f(=)) that contains z.

With local—-global representation, this problem can be solved without communication:
each processor finds its contribution to the component; sufficient to broadcast just two vertices.

10

Result:

Input: 512° grids, medical images

Using local—global representation
vs. Vislt (state of the art)

Seconds

32 64 128 256 512
Number of processors



Variations

e Component labeling: instead of extracting a specific component, extract the
full levelset, and label its components. We can do so without communication.

e Interlevel set: extract a branch or a path (x,y) in the contour tree.
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e Contour tracking: match contours of f~1(s) with those of f~1(¢).
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Shared-memory mergin

e The basic operation in all three algorithm is the merging of two trees; this is
done by repeating the union—find algorithm on the union of the two trees.

e We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

e There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)
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Shared-memory mergin

e [he problem is that some vertices get traversed many more times than is

necessary. (Merging n linked lists of size 1 each can take between nlogn
and n° depending on the chosen order. We don't control the order.)

e Instead we turn to skip-lists (and build skip-trees):

e Each parent pointer becomes a stack of randomized /
height;

e Each path to the root is a skip-list; H’

e \When merging two skip-lists, we can use additional /
levels to skip over many nodes. ]
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(Merging two trees with 800,000 nodes each.)



Summary

e Interleaving distance between merge trees.
Major question: can we compute it efficiently?

e [Two new ways to compute merge trees in parallel:

— Global simplified: take advantage of the problem structure to
prune noise;

— Local—global: distribute the tree to facilitate analysis.

(Can construct a tree on billions of points. Tried up to 4, 0965.)

e A new way to merge two trees in parallel in shared memory.

e [he shift of emphasis from parallel computation of the descriptor to
its distributed representation that facilitates subsequent analysis is

likely to benefit other topological constructions (Reeb graphs,
Morse—Smale complexes, etc.).



Thank you for your
time and attention!
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