
Back to Basics: Merge Trees

Dmitriy Morozov
Lawrence Berkeley National Laboratory

Applied and Computational Algebraic Topology
Bremen, Germany

July 15, 2013

Based on joint works with Kenes Beketayev and Gunther Weber.

Wrinkles on Everest

Mount Everest (8,848 m)

Wrinkles on Everest

Mount Everest (8,848 m)

Source: Wikipedia

Wrinkles on Everest

Mount Everest (8,848 m)Lhotse (8,516 m)

Source: Wikipedia

Wrinkles on Everest

Mount Everest (8,848 m)Lhotse (8,516 m)Lhotse Shar (8,383 m)

Source: Wikipedia

Topographic Prominence

The prominence of a peak is the height of the peak’s summit above the
lowest contour line encircling it and no higher summit.

Topographic Prominence

The prominence of a peak is the height of the peak’s summit above the
lowest contour line encircling it and no higher summit.

M
ax

im
u

m

Saddle

Persistence diagram records for each peak its value on the vertical axis,
and the value of the saddle where it merges into a higher peak on the
horizontal axis.

prominence = persistence

Persistence Diagram of Elevation on Earth
M

ax
im

u
m

Saddle

2,800

Persistence Diagram of Elevation on Earth
M

ax
im

u
m

Saddle

Highest mountains with prominence > 500 m.

Lhotse
K2

500

2,800

Mount Everest
Kangchenjunga

Lhotse Shar

Persistence Diagram of Elevation on Earth
Mount Everest

M
ax

im
u

m

Saddle

Aco
nca

gu
a

M
ou

nt
M

cK
in

le
y

M
ou

nt
K

ili
m

an
ja

ro

Mountains with highest prominence.

Highest mountains with prominence > 500 m.

Lhotse
K2

500

2,800

Mount Everest
Kangchenjunga

Mount Whitney

Motivation
Natural phenomena modeled as scalar functions, f : X→ R
• density of galaxies

• geometry of a material encoded in its distance function

• rate of fuel consumption during combustion encodes a flame

(Source: CCSE, CCC, SCG at LBNL.)

Topological features in scientific data:

To analyze such data, need to detect and extract salient features;
compute global statistics.

Mention clustering as a sample application.

Functions

Persistence is defined with respect to any scalar function f : X→ R.

if f is . . . persistent maxima capture significant . . .

elevation on Earth mountains

2× 1013

0

3
×

10
1
4

8× 1014

B
ir

th

Death

Functions

Persistence is defined with respect to any scalar function f : X→ R.

if f is . . . persistent maxima capture significant . . .

elevation on Earth mountains

density of particles clusters
e.g., halos in astrophysical data

2× 1013

0

3
×

10
1
4

8× 1014

B
ir

th

Death

Functions

Persistence is defined with respect to any scalar function f : X→ R.

if f is . . . persistent maxima capture significant . . .

elevation on Earth mountains

density of particles clusters
e.g., halos in astrophysical data

grayscale image of cells nucleii of cells

2× 1013

0

3
×

10
1
4

8× 1014

B
ir

th

Death

Functions

Persistence is defined with respect to any scalar function f : X→ R.

if f is . . . persistent maxima capture significant . . .

elevation on Earth mountains

density of particles clusters

distance to a shape pockets within the shape

e.g., halos in astrophysical data

e.g., voids in a subsurface rock
formation, or in a protein

grayscale image of cells nucleii of cells

Pockets

Pockets

s

l

12 13

13

. . .

...

27

40

Pru
ned

lo
ts

of
noi

sy
poi

nts

Pockets

s

l

12 13

13

. . .

...

27

40

Pru
ned

lo
ts

of
noi

sy
poi

nts

Pockets

s

l

12 13

13

. . .

...

27

40

Pru
ned

lo
ts

of
noi

sy
poi

nts

Pockets

s

l

12 13

13

. . .

...

27

40

Pru
ned

lo
ts

of
noi

sy
poi

nts

Pockets

s

l

12 13

13

. . .

...

27

40

Pru
ned

lo
ts

of
noi

sy
poi

nts

Pockets

s

l

12 13

13

. . .

...

27

40

Pru
ned

lo
ts

of
noi

sy
poi

nts

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Birth
D

ea
th

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Birth
D

ea
th

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Either here or on the next slide explain the nodes and paths in the tree.

Birth
D

ea
th

Merge Trees

Sublevel set: Xa = f−1(−∞, a]

Function: f : X→ R

Merge tree = record connectivity of the components of sublevel sets

Either here or on the next slide explain the nodes and paths in the tree.

Birth
D

ea
th

Stability Theorem (for persistence diagrams):

dB(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞.

Interleaving Distance
between Merge Trees

Interleaving Distance
Trees Tf and Tg.

i2ε shift map in Tf

j2ε shift map in Tg

f̂ : Tf → R
ĝ : Tg → R

ia+2ε

(Inclusion of component Fx into
a component of Fx+2ε.)

Interleaving Distance
Trees Tf and Tg.

αε and βε are ε-compatible.

i2ε shift map in Tf

j2ε shift map in Tg

αε : Tf → Tg

βε : Tg → Tf

f̂ : Tf → R
ĝ : Tg → R

αε

βε

ia+2ε

(Inclusion of component Fx into
a component of Fx+2ε.)

ĝ(αε(x)) = f̂(x) + ε

βε ◦ αε = i2ε
f̂(βε(x)) = ĝ(x) + ε

αε ◦ βε = j2ε

Interleaving Distance
Trees Tf and Tg.

αε and βε are ε-compatible.

i2ε shift map in Tf

j2ε shift map in Tg

αε : Tf → Tg

βε : Tg → Tf

f̂ : Tf → R
ĝ : Tg → R

αε

βε

ia+2ε

(Inclusion of component Fx into
a component of Fx+2ε.)

dI(Tf ,Tg) = inf{ε | there are ε-compatible maps αε and βε}

ĝ(αε(x)) = f̂(x) + ε

βε ◦ αε = i2ε
f̂(βε(x)) = ĝ(x) + ε

αε ◦ βε = j2ε

Examples

Examples

Shifted saddle: dI = ε.

ε

Examples

Shifted saddle: dI = ε.

ε

Shifted leaf: dI = ε.

ε

Examples

Shifted saddle: dI = ε.

ε

Missing branch: dI = ε/2.

ε

Shifted leaf: dI = ε.

ε

dI is a metric

1. dI(T,T) = 0;

2. dI(Tf ,Tg) = dI(Tg,Tf);

3. dI(T1,T3) ≤ dI(T1, T2) + dI(T2, T3).

Proof:

1. α0 = β0 = Id;

2. symmetry of the definition;

3. α13 = α12 ◦ α23; β13 = β12 ◦ β23.

Stability

Stability Theorem: dI(Tf ,Tg) ≤ ‖f − g‖∞.

Stability

Stability Theorem: dI(Tf ,Tg) ≤ ‖f − g‖∞.

Fa = f−1(−∞, a]

Ga = g−1(−∞, a]

Let ε = ‖f − g‖∞.

Fa ⊆ Ga+ε ⊆ Fa+2ε.

Stability

Stability Theorem: dI(Tf ,Tg) ≤ ‖f − g‖∞.

Fa = f−1(−∞, a]

Ga = g−1(−∞, a]

Let ε = ‖f − g‖∞.

Fa ⊆ Ga+ε ⊆ Fa+2ε.

The inclusion maps a component of Fa into a component of Ga+ε,
and vice versa. Call these maps αε and βε.

Fa

Ga+ε

Stability

Stability Theorem: dI(Tf ,Tg) ≤ ‖f − g‖∞.

Fa = f−1(−∞, a]

Ga = g−1(−∞, a]

Let ε = ‖f − g‖∞.

Fa ⊆ Ga+ε ⊆ Fa+2ε.

The inclusion maps a component of Fa into a component of Ga+ε,
and vice versa. Call these maps αε and βε.

Fa

Ga+ε

Claim: αε and βε are ε-compatible.

ĝ(αε(x)) = f̂(x) + ε

βε ◦ αε = i2ε
f̂(βε(x)) = ĝ(x) + ε

αε ◦ βε = j2ε

Bottleneck vs. Interleaving Distance

Birth

D
ea

th

dB(Dgmf ,Dgmg) = 0 dI(Tf ,Tg) = ε > 0

Bottleneck vs. Interleaving Distance

Stability Theorem [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot]:

Persistence modules: {Fa, i
b
a : Fa → Fb}, {Ga, j

b
a : Ga → Gb}.

if there are maps φa : Fa → Ga+ε and ψa : Ga → Ga+ε,
such that their compositions commute with iba and jba.

ε-interleaved:

Fa

Ga+ε Gb

Fb+εFa+2ε

(Generalizes ordinary stability theorem for persistence diagrams if
Fa = H(f−1(−∞, a]) and Ga = H(g−1(−∞, a]).)

If two persistence modules are ε-interleaved, then their persistence
diagrams are ε-close in the bottleneck distance.

Bottleneck vs. Interleaving Distance

Stability Theorem [Chazal, Cohen-Steiner, Glisse, Guibas, Oudot]:

Persistence modules: {Fa, i
b
a : Fa → Fb}, {Ga, j

b
a : Ga → Gb}.

if there are maps φa : Fa → Ga+ε and ψa : Ga → Ga+ε,
such that their compositions commute with iba and jba.

ε-interleaved:

Corollary: dB(Dgm0(f),Dgm0(g)) ≤ dI(f, g).

Fa

Ga+ε Gb

Fb+εFa+2ε

(Generalizes ordinary stability theorem for persistence diagrams if
Fa = H(f−1(−∞, a]) and Ga = H(g−1(−∞, a]).)

If two persistence modules are ε-interleaved, then their persistence
diagrams are ε-close in the bottleneck distance.

αε : Tf → Tg ⇒ φa : H0(f−1(−∞, a])→ H0(g−1(−∞, a+ ε])

βε : Tg → Tf ⇒ ψa : H0(g−1(−∞, a])→ H0(f−1(−∞, a+ ε])

Proof:

Parallel Computation
of Merge Trees

Sample Queries

x

Given a point x ∈ X, find the volume of
the component of the sublevel set
f−1(−∞, a] that contains x.

• Cosmological simulations of the universe.

Detect heavy objects as persistent maxima,
but how to integrate their mass in parallel?

x

f−1(f(x))

U

Compare statistical properties to observations,
distribution of mass of heavy objects.

• Extract a component of the levelset that contains a specific point.
(E.g., when studying the consumption of hydrogen during combustion.)

• The datasets are large: 1, 0243 − 4, 0963 per timestep.

Sample Queries

x

Given a point x ∈ X, find the volume of
the component of the sublevel set
f−1(−∞, a] that contains x.

• Cosmological simulations of the universe.

Detect heavy objects as persistent maxima,
but how to integrate their mass in parallel?

x

f−1(f(x))

U

Compare statistical properties to observations,
distribution of mass of heavy objects.

• Extract a component of the levelset that contains a specific point.
(E.g., when studying the consumption of hydrogen during combustion.)

• The datasets are large: 1, 0243 − 4, 0963 per timestep.

Component volume query

x

Given a point x ∈ X, find the volume of the component of the sublevel set
f−1(−∞, a] that contains x.

• Brute-force solution is too slow when the data is distributed among
many processors;

• It makes even less sense if one is interested in a histogram of
volumes as we vary the sublevelset thresholds.

(e.g., determine the
volume of a cluster)

Merge Trees: Construction
Function: f : K → R
K is a triangulation;
f is defined on the vertices and piecewise-linearly interpolated.

f

Merge Trees: Construction
Function: f : K → R
K is a triangulation;

Merge tree construction:

sort vertices of K by f
for each vertex v in sorted order do

add v
for each edge uv with f(u) ≤ f(v) do

if Find(u) 6= Find(v) then
set v as the parent of u in T
Union(u, v)

f is defined on the vertices and piecewise-linearly interpolated.

f

(variation of Kruskal’s algorithm):

Merge Trees: Construction
Function: f : K → R
K is a triangulation;

Merge tree construction:

sort vertices of K by f
for each vertex v in sorted order do

add v
for each edge uv with f(u) ≤ f(v) do

if Find(u) 6= Find(v) then
set v as the parent of u in T
Union(u, v)

f is defined on the vertices and piecewise-linearly interpolated.

• Best known deterministic algorithm for MST: O(mα(m,n)) [Chazelle ’00]

Connection to MST?

f

K
ru

sk
al

’s
al

go
ri

th
m

n = |vertices|
m = |edges|

• Lower-bound for merge trees: Ω(n log n).

(variation of Kruskal’s algorithm):

Existing Parallel Approach [Pascucci, Cole-McLaughlin ’03]

Merge(T(U), T(V)) → T(U ∪ V)

Problem: Given merge trees for f|U and f|V , find merge tree for f|U∪V .

repeat the union-find contruction with
the two trees as the input.

• Hierarchically partition the domain
(e.g., a quad- or oct-tree for regular grids).

• On each processor Pi, compute the merge tree
TUi

of the function restricted to the set Ui.

• Merge trees in pairs, until we get the full merge tree.
(In other words, perform a binary reduction.)

Problem: The reduction is top-heavy. At the end,
a single processor has to assemble the entire merge tree.
The procedure does not scale.

To merge two trees:
take their union and compute its merge tree.

U V

U V

U ∩ V

x1

x1

x2

x2x3

x3

x1

x2

x3

T(U) T(V)

Solution I: Global Simplified
Data is always corrupted by noise.
Typical analysis pipeline: compute a descriptor; simplify the descriptor;
use the simplified descriptor for analysis.

For merge trees, simplification means pruning short banches.
Given ε > 0, remove subtrees of depth less than ε.

Birth

D
ea

th

Solution I: Global Simplified
Data is always corrupted by noise.
Typical analysis pipeline: compute a descriptor; simplify the descriptor;
use the simplified descriptor for analysis.

For merge trees, simplification means pruning short banches.
Given ε > 0, remove subtrees of depth less than ε.

Birth

D
ea

th

ε

Solution I: Global Simplified
Data is always corrupted by noise.
Typical analysis pipeline: compute a descriptor; simplify the descriptor;
use the simplified descriptor for analysis.

For merge trees, simplification means pruning short banches.
Given ε > 0, remove subtrees of depth less than ε.

Interpretation:
Given f : X→ R, there is g : X→ R, with ‖f − g‖∞ ≤ ε, such that g
has the fewest extrema. Compute the merge tree of g, rather than f .

Birth

D
ea

th

ε

Solution I: Global Simplified
Data is always corrupted by noise.
Typical analysis pipeline: compute a descriptor; simplify the descriptor;
use the simplified descriptor for analysis.

For merge trees, simplification means pruning short banches.
Given ε > 0, remove subtrees of depth less than ε.

Interpretation:
Given f : X→ R, there is g : X→ R, with ‖f − g‖∞ ≤ ε, such that g
has the fewest extrema. Compute the merge tree of g, rather than f .

Birth

D
ea

th

ε

compute the simplified tree directly

Global Simplified

Global Simplified

Interleaved Computation

⇒ simplification and merging can be interleaved

Theorem:
Let TU and TU∪V be the merge trees of the function restricted to U
and U ∪ V . If every node in a subtree of TU lies outside U ∩ V , then
the subtree appears in TU∪V .

once a subtree lies in the interior of a region,
it does not change in the merging process.

low persistence + interior nodes only
⇒ simplify away

Theorem:

Interleaved Computation

⇒ simplification and merging can be interleaved

B
ef

or
e

A
ft

er

Theorem:
Let TU and TU∪V be the merge trees of the function restricted to U
and U ∪ V . If every node in a subtree of TU lies outside U ∩ V , then
the subtree appears in TU∪V .

once a subtree lies in the interior of a region,
it does not change in the merging process.

low persistence + interior nodes only
⇒ simplify away

Theorem:

All the experiments performed at the National Energy Research
Scientific Computing Center (NERSC) on a Cray XE6 with
24-core AMD 2.1GHz processors per node, sharing 32GB memory.

Timings

A2 (20483): astrophysics simulation
C (10242 × 2048): combustion simulation
A1 (10243): astrophysics simulation
V (5123): rotational angiography scan

A2C

V A1

2× 1013

0

3
×

10
1
4

8× 1014

B
ir

th

Death

(using 512 processors)

All the experiments performed at the National Energy Research
Scientific Computing Center (NERSC) on a Cray XE6 with
24-core AMD 2.1GHz processors per node, sharing 32GB memory.

Timings

A2 (20483): astrophysics simulation
C (10242 × 2048): combustion simulation
A1 (10243): astrophysics simulation
V (5123): rotational angiography scan

A2C

V A1

(using 512 processors)

Solution II: Local–Global Representation
Limitations of the global simplified scheme:

• have to pick the simplification threshold ε in advance (chicken-and-egg);

• one monolithic tree in the end (difficult to process).

Solution II: Local–Global Representation
Limitations of the global simplified scheme:

• have to pick the simplification threshold ε in advance (chicken-and-egg);

• one monolithic tree in the end (difficult to process).

Goal: distribute the tree representation.

• Many ways to do this, e.g., could store for every local vertex its
parent in the global tree. (Terrible for analysis.)

• Focus on analysis: distribute the tree to minimize communication
when post-processing.

Solution II: Local–Global Representation
Limitations of the global simplified scheme:

• have to pick the simplification threshold ε in advance (chicken-and-egg);

• one monolithic tree in the end (difficult to process).

Goal: distribute the tree representation.

• Many ways to do this, e.g., could store for every local vertex its
parent in the global tree. (Terrible for analysis.)

• Focus on analysis: distribute the tree to minimize communication
when post-processing.

Each processor records how its local vertices fit
into the global tree.

(Each branch is a connected component,
so we record for every local vertex what
global components it belongs to for all
function values.)

Local–Global Representation

Vertex colors represent domain regions.

Local–Global Representation

Vertex colors represent domain regions.

Local–Global Representation

Vertex colors represent domain regions.

Local–Global Representation

Vertex colors represent domain regions.

Local–Global Representation

Vertex colors represent domain regions.

Analysis

Example query: compute the volumes of the sublevel set components
that contain point x.

m1

x

s1

...

m2

s2

s3

m3

On the processor responsible for U 3 x:

• Identify the sequence of minima and
saddles m1, s1,m2, s2,m3, s3, . . .

• broadcast this sequence to the rest
of the processors

• each processor can independently
identify its contribution to each one
of these sublevel set components

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Sparse Exchange

U = initial local domain

B = current global domain

r = MPI rank

T ← MergeTree(f|U)
Until B is the full domain:

At each iteration:
send T(∂B)
receive T′(∂B′)
merge T and T′(∂B′)
sparsify → T(U ∪ ∂B)

1: 2:

4:3:

sparsification and merging can be interleaved

Each processor maintains the tree
sparsified with respect to its local
domain, and the boundary of its
current global domain.

Once a subtree consists only of
interior nodes, and its not reachable
from local or boundary vertices, we
can remove it.

Timings

A2 (20483): astrophysics simulation
C (10242 × 2048): combustion simulation
A1 (10243): astrophysics simulation
V (5123): rotational angiography scan

A2C

V A1

(using 512 processors)

Timings

A2 (20483): astrophysics simulation
C (10242 × 2048): combustion simulation
A1 (10243): astrophysics simulation
V (5123): rotational angiography scan

A2C

V A1

Almost as fast to compute as the most
aggressive simplification, but doesn’t
lose information.

(using 512 processors)

Tree growth

Largest tree size during each iteration on any processor.

Input: 1, 0243 grid of particle density (astrophysics data).

(using 512 processors)

Tree growth

Largest tree size during each iteration on any processor.

Input: 1, 0243 grid of particle density (astrophysics data).

End result: full merge tree (no information loss), but each processor has
to store only a small representation.

(using 512 processors)

Results

Number of processors

N
o

d
es

Final tree sizes as we increase the
number of processors (these serve
as the input to the analysis
routines):

Results

Number of processors

N
o

d
es

S
ec

o
n

d
s

Number of processors

Final tree sizes as we increase the
number of processors (these serve
as the input to the analysis
routines):

Times to compute this
representation:

Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

x

Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

x

f−1(f(x))

Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

x

f−1(f(x))

U

Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

VisIt (state of the art visualization software)

extracts the components and then labels
them.

x

f−1(f(x))

U

Input: 5123 grids, medical images

Contour Trees

t

w

v

u

x y

z

A

C

B

A B C

t

w

v
u z

yx

Distance function to {A,B,C}. Contour tree of the function.

Two points are equivalent, x ∼ y, if f(x) = f(y) and they belong to the same
component of the levelset f−1(f(x)).

f : X→ R

Reeb graph = quotient space X/∼ = continuously contract contours to points

If X is simply connected, Reeb graph is called a contour tree.

[Carr, Snoeyink, Axen ’03]:
compute contour tree from merge trees of f and −f in linear time.

Merge trees of f and −f contain the information that we want.

Contours

To extract the full contour, intersect
every maximal simplex with the levelset. f−1(a)

But we want to only report the
component that contains x.

Problem: Given a point x, extract component of f−1(f(x)) that contains x.

Contours

To extract the full contour, intersect
every maximal simplex with the levelset. f−1(a)

But we want to only report the
component that contains x.

Problem: Given a point x, extract component of f−1(f(x)) that contains x.

Idea: Local–global represenation determines a globally unique component ID
without any communication. On simply connected domains, sub- and super-level
sets components intersect in at most one component.

Contours

To extract the full contour, intersect
every maximal simplex with the levelset. f−1(a)

But we want to only report the
component that contains x.

Algorithm:

• Processor responsible for x, identifies the minimum and the maximum
of the sub- and super-levelset components that contain x.

Problem: Given a point x, extract component of f−1(f(x)) that contains x.

• Each processor Pj identifies the sub- and
super-levelset components containing x.

• Report only those simplices σ that
have a vertex in each component.

x x

Idea: Local–global represenation determines a globally unique component ID
without any communication. On simply connected domains, sub- and super-level
sets components intersect in at most one component.

Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

Result:
Input: 5123 grids, medical images
Using local–global representation

x

f−1(f(x))

U

(With local–global representation, for
each processor to find its contribution
to the component, it’s sufficient to
broadcast just two vertices.)

With local–global representation, this problem can be solved without communication:
each processor finds its contribution to the component; sufficient to broadcast just two vertices.

Analysis routine: levelset component extraction

Problem:
User chooses a point x,
extract component of
f−1(f(x)) that contains x.

Result:
Input: 5123 grids, medical images
Using local–global representation

vs. VisIt (state of the art)

x

f−1(f(x))

U

(With local–global representation, for
each processor to find its contribution
to the component, it’s sufficient to
broadcast just two vertices.)

With local–global representation, this problem can be solved without communication:
each processor finds its contribution to the component; sufficient to broadcast just two vertices.

Variations
• Component labeling: instead of extracting a specific component, extract the

full levelset, and label its components. We can do so without communication.

• Interlevel set: extract a branch or a path (x, y) in the contour tree.

−∞

x

y

sx1 sx2 sx3 sx4

sy1sy2sy3sy4sy5

mx
0 mx

1 mx
2 mx

3 . . .

my
0my

1my
2my

3my
4. . .

∞. . .
)[)[)[)[

](](](](](]

[

• Contour tracking: match contours of f−1(s) with those of f−1(t).

s

t

A B

X Y Z

A B

X Y Z

for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x1

x2

x3

x1

x2

x3

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)

x2

x3

x1

for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x1 x1

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)

x1

for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x2 x2

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)

x2

for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x3
x3

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)

x3

for each x ∈ U ∩ V do
zip(πU (x), πV (x))

path from x to the root
in the tree for f|U

πU (x) =

merge paths in
the sorted order
(recall Merge-Sort)

zip =

x1

x2

x3

x1

x2

x3

Shared-memory merging
• The basic operation in all three algorithm is the merging of two trees; this is

done by repeating the union–find algorithm on the union of the two trees.

• We would like to take advantage of multiple shared-memory cores, but this
procedure requires the vertices to be processed in the order of the function
value.

• There is an alternative algorithm [Bremer et al.] that merges in sorted order
the paths in the two trees that start from the shared vertices.
(Unfortunately, this algorithm is much slower in the serial case than union-find.)

x2

x3

x1

Shared-memory merging
• The problem is that some vertices get traversed many more times than is

necessary. (Merging n linked lists of size 1 each can take between n logn
and n2 depending on the chosen order. We don’t control the order.)

• Instead we turn to skip-lists (and build skip-trees):

• Each parent pointer becomes a stack of randomized
height;

• Each path to the root is a skip-list;

• When merging two skip-lists, we can use additional
levels to skip over many nodes.

Shared-memory merging
• The problem is that some vertices get traversed many more times than is

necessary. (Merging n linked lists of size 1 each can take between n logn
and n2 depending on the chosen order. We don’t control the order.)

• Instead we turn to skip-lists (and build skip-trees):

• Each parent pointer becomes a stack of randomized
height;

• Each path to the root is a skip-list;

• When merging two skip-lists, we can use additional
levels to skip over many nodes.

(Merging two trees with 800,000 nodes each.)

Shared-memory merging
• The problem is that some vertices get traversed many more times than is

necessary. (Merging n linked lists of size 1 each can take between n logn
and n2 depending on the chosen order. We don’t control the order.)

• Instead we turn to skip-lists (and build skip-trees):

• Each parent pointer becomes a stack of randomized
height;

• Each path to the root is a skip-list;

• When merging two skip-lists, we can use additional
levels to skip over many nodes.

(Merging two trees with 800,000 nodes each.)

Summary

• Two new ways to compute merge trees in parallel:

– Global simplified: take advantage of the problem structure to
prune noise;

– Local–global: distribute the tree to facilitate analysis.

(Can construct a tree on billions of points. Tried up to 4, 0963.)

• A new way to merge two trees in parallel in shared memory.

• The shift of emphasis from parallel computation of the descriptor to
its distributed representation that facilitates subsequent analysis is
likely to benefit other topological constructions (Reeb graphs,
Morse–Smale complexes, etc.).

• Interleaving distance between merge trees.
Major question: can we compute it efficiently?

Thank you for your
time and attention!

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
through

• Scientific Data Management and Analysis at Extreme Scale (DE-FOA-0000256)

• Use of resources at the National Energy Research Scientific Computing (NERSC) Center

