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Dynamical systems

A dynamical system (or S-dynamical system, or S-space) is a map
of simplicial sets

φ : X × S → X ,

giving an action of a parameter space S on a state space X .

Equivalently, a dynamical system is a map

φ∗ : S → hom(X ,X )

into the topological monoid of endomorphisms of X .

s 7→ φ∗(s) : X → X is continuous in s ∈ S .

If S has a monoidal structure, then φ∗ is required to be a
homomorphism.

Most often, X is a manifold, and S is a time parameter which is a
submanifold of the real numbers.
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Examples: Discrete dynamical systems

If S = ∗ is a one-point space, then a dynamical system
parameterized by S is just a map X → X .

The free monoid on the one-point space is a copy of N, and so
there is an associated monoid map

f∗ : N→ hom(X ,X )

Cellular automata: X = (Zn)k consists of points in an integral
lattice, each of which can be in a set of k states.
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Category of S-spaces

A morphism f : X → Y of S-spaces is a map f : X → Y which
preserves the respective S-actions. Morphisms are also called
S-equivariant maps.

S − sSet is the category of S-spaces and their morphisms.

Question: (Carlsson) What could be meant by a homotopy theory
of dynamical systems, or S-spaces?

Naive Definition: A map X → Y of S-spaces is a weak
equivalence if and only if the underlying map of simplicial sets
(spaces) is a weak equivalence.

This is analogous to the traditional naive definition of
G -equivariant weak equivalence for spaces equipped with an action
by a group G .
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Varying the parameter space

It should mean something in the homotopy theory of dynamical
systems if the parameter space S is contractible.

We need a category of dynamical systems which contains the
S-space categories for all parameter spaces S , and for which we
can vary S .

A map (θ, f ) : X → Y consists of maps θ : S → T and f : X → Y
such that the following commutes:

S × X //

θ×f ��
X
f��

T × Y // Y

There is a homotopy theory for this category, but the weak
equivalences are more difficult to describe.

Feel good fact: if θ and f are weak equivalences, then (θ, f ) is a
weak equivalence for this theory (whatever it is).
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Quillen model categories

A closed model category is a category M equipped with weak
equivalences, fibrations and cofibrations s.t. the following hold:

CM1: M has all limits and colimits.
CM2: If any two of f , g , g · f is a weak equivalence, so is the third.
CM3: Weak equivalences, cofibrations and fibrations are closed
under retraction.
CM4: Given a cofibration i , a fibration p and diagram

A //

i
��

X

p

��
B //

??

Y

then the lift exists if either i or p is a weak equivalence (trivial).
CM5: Every f has f = p · j = q · i , where p is a fibration, j is a
triv. cofibration, q is a triv. fibration, j is a cofibration.
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Examples: ordinary homotopy theory

sSet = simplicial sets, and Top = topological spaces.

Fibrations for Top are Serre fibrations, and weak equivalences are
weak homotopy equivalences. CW -complexes are cofibrant objects.

There are adjoint functors

| | : sSet � Top : S

The weak equivalences X → Y of sSet are those maps which
induce weak equivalences |X | → |Y |, and the cofibrations are
monomorphisms. Fibrations are Kan fibrations.

The adjoint functors form a “Quillen equivalence”, and induce an
adjoint equivalence of homotopy categories

| | : Ho(sSet) � Ho(Top) : S
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Homotopy theory of S-spaces, 1

A map f : X → Y of S-spaces is a

1) weak equivalence if f is a weak equivalence of simplicial sets

2) cofibration if f is a monomorphism

3) projective fibration if f is a Kan fibration.

An injective fibration is a map which has the right lifting property
(RLP) with respect to all trivial cofibrations.

A projective cofibration is a map which has the left lifting property
(LLP) with respect to all trivial projective fibrations.

A //

i
��

X

p

��
B //

??

Y

Rick Jardine Homotopy theories of dynamical systems



Homotopy theory of S-spaces, 2

Theorem

Suppose that S is a fixed choice of parameter space.

1) The category S − sSet, together with the cofibrations, weak
equivalences and injective fibrations, satisfies the axioms for a
proper closed simplicial model category. This model structure
is cofibrantly generated.

2) The category S − sSet, together with the projective
cofibrations, weak equivalences and projective fibrations,
satisfies the axioms for a proper closed simplicial model
category. This model structure is cofibrantly generated.

The proof follows a pattern that we know: p is an injective
fibration if and only if it has the RLP wrt all bounded trivial
cofibrations, and part 1) implies part 2).
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Dynamical systems to diagrams

F (S) is the free simplicial monoid associated to a space S :

F (S) = ∗ t S t S×2 t S×3 t . . .

and an S-space X × S → X is canonically a module over F (S).

Alternatively, F (S) is a simplicial category (or a category enriched
in simplicial sets, with one object) and X is an F (S)-diagram.

Definition: A simplicial category A is a simplicial object in
categories.

A consists of simplicial sets Ob(A) and Mor(A) such that all
categorical structure s, t : Mor(A)→ Ob(A), e : Ob(A)→ Mor(A),
compositions, are compatible with the simplicial structure.

Definition: A category enriched in simplicial sets is a simplicial
category B such that Ob(B) is discrete (ie. generated by vertices).
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Internal diagrams

A = simplicial category. An A-diagram in simplicial sets consists of
a simplicial set map π : X → Ob(A) and an action diagram

X ×s Mor(A)
m //

��

X
π��

Mor(A)
t

// Ob(A)

(x , α) 7→ α(x)

such that 1(x) = x and β(α(x)) = (βα)(x).

SetA is the category of A-diagrams. A morphism (natural
transformation) is a commutative diagram

X
f //

π $$HHHH Y

πzzvvvv

Ob(A)

which respects the multiplication.
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Example: Ordinary functors

A functor F : I → Set consists of sets F (i), i ∈ Ob(I ), and
morphisms F (α) : F (i)→ F (j) satisfying the usual properties.

Alternatively, F consists of a function

π : F =
⊔

i∈Ob(I )

F (i)→
⊔

i∈Ob(I )

∗ = Ob(I ),

and a morphism

m : F ×s Mor(I ) =
⊔
α:i→j

F (i)→
⊔
j

F (j) = F

A natural transformation of functors α : F → G is a function⊔
i∈Ob(I )

F (i)→
⊔

i∈Ob(I )

G (i)

which is fibred over Ob(I ).
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Homotopy theory of diagrams, 1

A = category enriched in simplicial sets (ie. Ob(A) is discrete).

A map f : X → Y of A-diagrams is

1) a weak equivalence if the map

X
f //

$$HHHH Y
zzvvvv

Ob(A)

is a weak equivalence of sSet/Ob(A)

2) a cofibration if the simplicial set map f is a monomorphism

3) a projective fibration if the simplicial set map f is a Kan
fibration.

An injective fibration is a map which has the right lifting property
with respect to all trivial cofibrations.

A projective cofibration is a map which has the left lifting property
with respect to all trivial projective fibrations.
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Homotopy theory of diagrams, 2

Theorem

Suppose that A is a category which is enriched in simplicial sets.

1) The category SetA, together with the cofibrations, weak
equivalences and injective fibrations, satisfies the axioms for a
proper closed simplicial model category. This model structure
is cofibrantly generated.

2) The category SetA, together with the projective cofibrations,
weak equivalences and projective fibrations, satisfies the
axioms for a proper closed simplicial model category. This
model structure is cofibrantly generated.

The theorem is a special case of a result which holds for diagrams
of simplicial presheaves over a presheaf of simplicial categories with
discrete objects.
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Homotopy colimits

Suppose that F : I → Set is an ordinary functor.

There is a category EIF whose objects are the pairs (x , i) with
x ∈ F (i). The morphisms α : (x , i)→ (y , j) are morphisms
α : i → j of I such that α∗(x) = y .

This category has a nerve B(EIF ), whose n-simplices are strings

(x0, i0)
α1−→ (x1, i1)

α2−→ . . .
αn−→ (xn, in)

of length n. All that matters here is x0 and the string in I :

holim−−−→ IFn = B(EIF )n =
⊔

i0→···→in

F (i0).

This is the homotopy colimit for the functor F . It is the space of
finite trajectories associated to the functor F , or the space of
dynamics for the functor F .
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Homotopy colimits and pullbacks

A = simplicial category. Every A-diagram π : X → Ob(A)
determines a bisimplicial set map

holim−−−→ A X → BA,

by taking homotopy colimit in each simp. degree, giving a functor

holim−−−→ A : SetA → s2Set/BA.

The pullback functor

pb : s2Set/BA→ SetA,

is defined by taking diagonals of the pullbacks

pb(Y )i //

��

Y

��
B(A/i) // BA

in all simplicial degrees.
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Homotopy colimit structure

A map f : X → Y of A-diagrams is a cofibration if the underlying
simplicial set map is a monomorphism.

f : X → Y is a weak equivalence if the induced map

holim−−−→ AX → holim−−−→ AY

is a diagonal weak equivalence of bisimplicial sets.

Theorem

With these definitions, the category SetA satisfies the axioms for a
proper closed model category.

This is the homotopy colimit model structure for the category of
A-diagrams. Schlichtkrull uses a special case in his proof of the
Barratt-Kahn-Priddy-Quillen Theorem (QS0

0 ' (BΣ∞)+).
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Relation with diagonal model structure

Theorem

The functors holim−−−→ A and pb induce an equivalence of categories

Ho(SetA) ' Ho(s2Set/BA)

for the homotopy colimit structure on SetA and the diagonal
structure on s2Set/BA.

A bisimplicial set map f : X → Y is a cofibration if it is a
monomorphism. f : X → Y is a diagonal weak equivalence if the
simplicial set map f∗ : d(X )→ d(Y ) is a weak equivalence.

Theorem

There is a model structure on the category s2Set for which the
cofibrations are the monomorphisms and the weak equivalences are
those map X → Y which induce a weak equivalence d(X )→ d(Y )
of associated diagonal simplicial sets.
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Homotopy types of categories

A functor f : C → D is a fibration (respectively weak equivalence)
if the induced map BC → BD is an sd2-fibration (respectively
weak equivalence).

Theorem (Thomason)

1) With these definitions the category Cat of small categories
has the structure of a proper closed model category.

2) The adjunction
P : sSet � Cat : B

is a Quillen equivalence, for the sd2-structure on simplicial
sets.

P is the path category functor.

PBC ∼= C for small categories C .
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Homotopy types of categories, 2

Crux of the proof: if K → L is an inclusion of finite simplicial
complexes, then all pushout diagrams

NBN(K ) //

��

C

��
NBN(L) // D

induce homotopy cocartesian diagrams of simplicial sets.

N(K ) is the poset of non-degenerate simplices of a simplicial set
K : σ ≤ τ if σ ∈ 〈τ〉.
BN(K ) = sd(K ) (order complex of NK ) is the barycentric
subdivision of K if K is a simplicial complex.

Note that BNBN(K ) ∼= sd2(K ) for simplicial complexes K .

The induced functor NBN(K )→ NBN(L) is a “Dwyer map”.
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Subdivisions

The subdivision
sd(X ) = lim−→

∆n→X

BN∆n.

is a colimit of barycentric subdivisions of simplices.

Ex(X )n = hom(sd(∆n),X )

for simplicial sets X .

There are adjoint functors

sdn : sSet � sSet : Exn

and natural weak equivalences sdn X
'−→ X and Y

'−→ Exn Y for all
simplicial sets X and Y .
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Subdivision model structures

p : X → Y is an sdn-fibration if the map Exn X → Exn Y is a Kan
fibration, or if p has the RLP wrt all sdn(Λm

k )→ sdn(∆m).

The sdn-cofibrations are those maps which have the LLP w.r.t. all
maps which are sdn-fibrations and weak equivalences.

Theorem

1) The category sSet of simplicial sets, together with the weak
equivalences, sdn-fibrations, and sdn-cofibrations, satisfies the
axioms for a proper closed model category.

2) The adjoint pair of functors

sdn : sSet � sSet : Exn

defines a Quillen equivalence between the standard model
structure and the sdn-structure for simplicial sets.
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Subdivisions for bisimplicial sets

sdm,n X = lim−→
∆p,q→X

sdm ∆p×̃ sdn ∆q.

×̃ is external product: ∆p,q = ∆p×̃∆q.

The functor sdm,n has a right adjoint Exm,n. Both functors
preserve diagonal homotopy types.

A map f : X → Y of bisimplicial sets is an sdm,n-fibration if the
induced map Exm,n X → Exm,n Y is a diagonal fibration.

sdm,n-cofibrations are defined by a left lifting property with respect
to trivial fibrations.
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Subdivision model structures for bisimplicial sets

Theorem

1) The category s2Set, with the sdm,n-fibrations, diagonal weak
equivalences and sdm,n-cofibrations, satisfies the axioms for a
proper closed model category.

2) The adjoint functors

sdm,n : s2Set � s2Set : Exm,n

define a Quillen equivalence between the diagonal model
structure and the sdm,n-structure for bisimplicial sets.
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Homotopy types of simplicial categories

A morphism f : C → D of simplicial categories is

a) a fibration if the map BC → BD is an sd2,0-fibration, and

b) a weak equivalence if the map BC → BD is a diagonal
equivalence.

Theorem

1) With these definitions, the category sCat satisfies the axioms
for a proper closed model category.

2) The adjunction
P : s2Set � sCat : B

defines a Quillen equivalence between simplicial categories and
the sd2,0-model structure for bisimplicial sets.
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Diagram homotopy types

Let sDia be the category whose objects are bisimplicial set maps
X → BC where C is a simplicial category. Say that a morphism

X
f //

��
Y
��

BC g
// BD

is a weak equivalence if f and g are weak equivalences, and is a
fibration if the maps g : BC → BD and

X → BC ×BD Y

are sd2,0-fibrations. Say that the map is a cofibration if f is an
sd2,0-cofibration and g is a cofibration of simplicial categories.

Rick Jardine Homotopy theories of dynamical systems



Theorem

With these definitions, the category sDia satisfies the axioms for a
closed model category.

1) We regard bisimplicial set maps Y → BA as A-diagrams, but
that’s okay: every A-diagram Y can be recovered from the map
holim−−−→ AY → BA up to sectionwise weak equivalence, via the
pullback functor.

2) We now have a homotopy theory for all dynamical systems:
dynamical systems and parameter spaces can be varied
simultaneously.

3) All of this can be topologized. There is a model structure for
presheaves of simplicial categories which is defined by an
sd2,0-model structure for bisimplicial presheaves, and a
corresponding model structure on diagram objects Y → BA in
bisimplicial presheaves, all over an arbitrary Grothendieck site.
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