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Families of Spaces

o

m Given h: Y — R we can study the sub-level sets
Y<i = h=1(—o0, t].
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® To each number t € R, we have a space Y¢; := h=1(—o0, t]:
t ~—> Ygt
4
s~ Y5

B Fort<r<s, wehavefsy="f,0fy ie.
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Families of Spaces and Data

o

® To each number t € R, we have a space Y¢; := h=1(—o0, t]:

t~—~—> Y

i

SM’\Q’Y<S

B Fort<r<s, wehavefsy="f,0fy ie.
F:(R,<)— Top is a functor.
® Homology in degree i with field coefficients is a functor

Hi(— k) : Top — Vect,
® (Sub-level set) Persistent Homology is the composition of these
functors
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Compressed Representation

o

®m Question: What is the smallest poset that contains all the
information of the map h?
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Compressed Representation &

S

®m Question: What is the smallest poset that contains all the
information of the map h?

® Morse Theory Tells Us: If the interval [t, s] contains no critical
values, then Y¢; = Y

U

n
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Compressed Representation

m Define a quotient poset g : R — P =R / ~ where t ~ s iff for every
r € [t,sl, Y<t = Y, is a homeomorphism, i.e. is an invertible
continuous map.

" x<a<yt=P

m f:R — Top is actually G: P — R precomposed with g, i.e.

F =q*G.
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® Moral: The Morse condition allowed us to work with a smaller
poset in a loss-free way.
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Motivating Level-Set Persistence
®m Problem: Sub-level persistence h: Y — R depends on order of R,
which doesn’t generalize to (multi-dimensional) persistence over
R?, for example.
m Solution: Do level-set persistence!
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3 Ways to “Connect the Fibers”

(1) Closed Cells: For h: Y — R, pick a mesh
s < X1 < X < Xjp1 < ---, then get a zigzag of spaces

o

e ) = M xial) e B )

h"(x) h(y)

|

X —> [xy] <<— vy
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h(x) h(y)

X —> [xy] «— vy
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3 Ways to “Connect the Fibers”

(2) Open Stars: For h: Y — R, pick a mesh
s < X1 < X < Xjp1 < ---, then get a zigzag of spaces

o

s b ((m1, %)) = b H(—1, xi11)) < (G, xi1)) = -

N\

hilxy) <€— h™(x,y) —>  hlxy]

|

xy) «— (xy) —> (xy]
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hilxy) <€— h(x,y) —>  h{xy]
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3 Ways to “Connect the Fibers”

=T

o

(3) Actually do level-set persistence!

N
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Level-set Persistence

/)

?

o

What's the right indexing set (category)?
m For each t € (x, y) we have a space Y;

m For each s € (x, y) there is a neighborhood U; of Y; that contains
Ys
Y, s Uy <Y,

Allows us to define an invertible map on homology between the
fibers Y5 and Y;

® But, there is only a map from Y; to Y, and from Y; to Y.

S

X X
t s v t s v t s

X
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Level-set Persistence

o

The Entrance Path Category

m To the cell complex X := [x, y] with cells x, y and a = (x, y) we
associate a pre-ordered set Entr(X) (poset w/o anti-symmetry)

® This set has an element for every point in X, but with relations
t~~sands~ tfort,s€a

X <~~~ t ~~y

m Defining an equivalence relation t ~ s for all t,s € a yields the
opposite of the face relation poset, i.e. X°P:

a
X y
38 of 68
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Level-set Persistence

o

m Approach (3) and approach (2) are actually equivalent.
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m Approach (3) and approach (2) are actually equivalent.
m Approach (3) gives a definition for level-set persistence. Given
f:Y — X, for each i we have an assignment

Fi: Entr(X) ~ X°? — Vect teoC X Hi(f(t); k)
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o

m Approach (3) and approach (2) are actually equivalent.

m Approach (3) gives a definition for level-set persistence. Given
f:Y — X, for each i we have an assignment

Fi: Entr(X) ~ X°? — Vect teoC X Hi(f(t); k)

m Approach (3) generalizes to arbitrary dimensions and maps
f:Y — X as long as f is a proper stratified map, ie. f:Y = X
admits a decomposition X = UX into connected manifolds (a
stratification) where f; : f~1(Xy) — X, is a fiber bundle.
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oy
Level-set Persistence C ,, ?
m Approach (3) and approach (2) are actually equivalent.
m Approach (3) gives a definition for level-set persistence. Given
f:Y — X, for each i we have an assignment
Fi: Entr(X) ~ X°? — Vect teoC X Hi(f(t); k)
||

Approach (3) generalizes to arbitrary dimensions and maps

f:Y — X as long as f is a proper stratified map, ie. f:Y = X
admits a decomposition X = UX into connected manifolds (a
stratification) where f; : f~1(Xy) — X, is a fiber bundle.

Stratified maps are more general than triangulable maps, e.g.

f:R? > R? (x,y) — (x,xy)
is NOT triangulable.
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Cosheaves have a homology theory

o
A

?

m Can compute homology of X with coefficients in
F:X° — Vect by choosing local orientations
[0: 1] =< 0,01 >={£1, 0} and setting

0 =) [0 : T Mrex

oo — & F(faces) —» @ Ie(edges) — & F(vertices) — 0
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Cosheaves have a homology theory & ,

m Can compute homology of X with coefficients in
F:X° — Vect by choosing local orientations
[0: 1] =< 0,071 >={+£1, 0} and setting

0= [0 : T Mrex

oo — & F(faces) —» @ Ie(edges) — & F(vertices) — 0

m So What?

O Every cosheaf over the real line has a barcode decomposition and
cosheaf homology gives homology of barcodes as a special case.

O By additivity, computing homology of barcodes gives cosheaf
homology over one-dimensional cell complexes X, e.g. X = [0, 1].

O Cosheaf homology well-defined in absence of barcodes.
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F(x) «—= F(a) —> F(y) Ho(X;F) H,(X;F)

[

=
o
~

0 «— k — 0

ke O —0 = k 0

Borel-Moore homology HZM(—) (similar to compactly supported
cohomology) is a topological homology theory that agrees with the
homology of the barcodes.



Cosheaves on the Line
/} N :\ /'J ! | A N
AN A~ Ho(X; F1) = k Hi(X;F1) = k
\. | \\:‘ |\
/s \

l Ho(X; Fo) = k Hy (X Fo) = k
: Ho(T) =k Hi(T)=k* Ho(T) = k

By’ 3 )

B, 3 ; ]



Cosheaves on the Line

L HXGF) =0 (X F) =k

J/ Ho(X; Fo) = k H(X; Fo) =0

| Ho(S%) = k Hi(S%) =0 Hy(S%) = k
B, ! {
B, E !
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Cosheaves on the Line : N

Ho(X;F1) =0 Hi(X;F1) =0
Ho(X; Fo) = k Hi(X;Fo) =0
! Ho(C) = k H1(C) = 0 Hy(C) =0
B, ]
B, E 3
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Total Homology from Level-Set Homology

Theorem (C. '12, Dey & Burghalea '11, Leray 1943)

Suppose
Y

g
XCR

is a stratified map with Y compact, then for each i consider the
barcodes B; associated to the cosheaf F;, then

Hi(Y) = Ho(R: Fj) © Hi(R; Fiy) = HPY (B7) @ HEY(Bj-1).
If X is 1D cell complex (graph or circle) then

Hi(Y) = Ho(R; 1) & Ha(R; Fiy).
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Spectral Sequences &

Theorem ( C.'12, Leray

1943) & Fi(v) & File) & Fi(o)
Suppose
y . R .
l ®F_1(v)~—@Fi_1(e)=—@Fi_1(0)
f
X

is a stratified map with Y
compact and X stratified as
a cell complex, then there is A
P @ Fo(v)
a spectral sequence
converging to H,(Y).

@ Fole) @ Fol(o)
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Spectral Sequences &

Ho(X: Fi) % Ha(X: F))
Ho(X; Fi_1) Hy(X;Fiq) Hy(X; Fi 1)
Ho(X; F1) % Ha(X; F1)
Ho(X; Fo) Hy (X; Fo) Hy(X; Fo)
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Total Homology?
® So What?

O Persistence is not supposed to compute total homology. It is supposed
to give statistical signals for the topology of uncertain spaces.
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Total Homology?
® So What?

O Persistence is not supposed to compute total homology. It is supposed
to give statistical signals for the topology of uncertain spaces.

Theorem (C. '13, Carlsson, de Silva & Morozov '09, Leray 1943)
Level-Set Persistence determines Sublevel-set Persistence
By defining

A A

Si(t) = Ho((—oo0,tl;F;) ® Hi((—o0, t]; Fi—1)
= HEM(B; N (—oo,t]) ® HEM(B;_1 N (—o0, t])

we get the homology of the entire sublevel set. Using covariance we
get for t < s the associated maps

Si(t) — Si(s)

a8 b¥fore.
























Remarks &

® This is a purely (co)sheaf-theoretic treatment of Carlsson, de Silva
& Morozov's Pyramid Theorem.
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® |t “generalizes” to a higher-dimensional pyramid theorem, with the
only caveat that the associated spectral sequences are harder to
compute.
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Remarks

® This is a purely (co)sheaf-theoretic treatment of Carlsson, de Silva
& Morozov's Pyramid Theorem.

® |t “generalizes” to a higher-dimensional pyramid theorem, with the
only caveat that the associated spectral sequences are harder to
compute.

® Any higher-dimensional attempt at persistence must interact with
spectral sequences.
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Remarks - Interleavings

0—> k¢—k—> k «—0 0— 0¢—k—> 0«0
k k
0—> k€—k—> k <0 0—> 0€¢—k—> 0«0
[ o K 0 (o
T T
0—> ke¢—k—> k <0 0—> 0<¢—k—> 0 <0
k 0
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0— k€—k—> k <0 0— 0¢—k— 0«0
k k
0—> k€<—k—> k «<—0 0— 0« k—> 0«0
L \ Kk 0 L A
< 7 C 7
0—> k€—k— k <0 ‘ 0— 0€«— k—> 0 <0
0

® These diagrams define functors F; : Open(X) — Vect by taking
colimits of the diagram over an open set, called pre-cosheaves.
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0— k€—k—> k <0 0— 0¢—k— 0«0
k k
0—> k€<—k—> k «<—0 0— 0« k—> 0«0
L \ Kk 0 L A
< 7 C 7
0—> k€—k— k <0 ‘ 0— 0€«— k—> 0 <0
0

m These diagrams define functors F; : Open(X) — Vect by taking
colimits of the diagram over an open set, called pre-cosheaves.

® For X a metric space, define a functor € : Open(X) — Open(X)
by
U~ U :={yeX|axe U, dx,y) <e}
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Remarks - Interleavings

0—> k¢—k—> k <0 0— 0¢«—k—> 0«0

0—>k<—k—f>k<\—0 0—>0<—k—/>0<\—0
< 7 < 7

0—> k€= k—> k «—0 0—> 0¢«— k—> 0«0

» Define £° := Foe for a thickened pre-cosheaf.
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Remarks - Interleavings

0— k€—k—> k <0 0—> 0€¢«—k—> 0«0
k k
0—> k€<—k—> k «<—0 0— 0« k—> 0«0
L \ Kk 0 L A
N 7 ¥ 7
0—> k€—k— k <0 ‘ 0— 0€«— k—> 0 <0
0

» Define £° := Foe for a thickened pre-cosheaf.

= Have interleavings of pre-(co)sheaves. Since X€ = X, F(X) gives
an obstruction to interleavings. So a point barcode is not
interleaved with an empty barcode. An open barcode is not
interleaved with a closed one.
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Remarks - Interleavings

o

| |

X a y P

m To f:Y — X, the assignment
U~ Hi(FH(U); k)

is a stable pre-cosheaf.

67 of 68




gy

Remarks - Interleavings

o
A

?

| |

X a y P

m To f:Y — X, the assignment
U~ Hi(FH(U); k)

is a stable pre-cosheaf.
® The functors | described which locally agree with this one, are
stable. But, these are the homology cosheaves of the derived
o7 prshforward, which is stable.
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