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Main Idea and Results

New definition of mean for a set X of diagrams in (Dp,Wp)

Mileyko et. al.:
I µX is itself a (set of) diagram(s) in Dp.
I Problem: non-uniqueness leads to discontinuity issues.

Our approach:
I Definition: µX ∈ P(Dp): (atomic) prob. dist. on diagrams.
I Theorem: X → µX is Hölder continuous (with exponent 1

2 )
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Paul Bendich (Duke) Probabilistic Fréchet Means on Persistence Diagrams July 15, 2013 4 / 33



Persistence modules

A persistence module F is:
I family of vector spaces {Fα}, α ∈ R, over a fixed field
I family of linear transformations f βα : Fα → Fβ , for all α ≤ β, s.t
α ≤ γ ≤ β implies f βα = f βγ ◦ f γα .

The number α is a regular value of the module if:
I There exists δ > 0 such that f α+ε

α−ε is iso. for all ε < δ.

If α is not a r.v., then it is a critical value of the module.

Module is tame if only finitely many c.v’s, and each v.s is of finite
rank.
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Persistence Modules

Given finitely many c.v’s c1 < c2 < . . . < cn.

Interleave r.v’s a0 < c1 < a1 < . . . < cn < an.

Set Fi = Fai :

F0 → F1 → F2 . . .→ Fn−1 → Fn
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Birth and Death

A vector v ∈ Fi is born at ci if v 6∈ im f ii−1

Such a v dies at cj if:

I f ji (v) ∈ im f ji−1

I f j−1
i (v) 6∈ im f j−1

i−1 .

The persistence of v is cj − ci .

v

Fi−1 Fi Fj−1 Fj

f j
j−1

f i
i−1 f j−1
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i−1
imf i

i−1
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Persistence Diagrams

Let P i ,j be v.s of classes born at ci and dead at cj , and βi ,j its rank.

Plot a dot of multiplicity βi ,j at (ci , cj) in plane.

Plot a dot of infinite multiplicity at all y = x diagonal points.

Result is Dgm(F).
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Example: persistent homology

Let Y ⊆ RD be compact space.

For α ≥ 0, define
Yα = d−1

Y [0, α]

For each k, get module {Hk(Yα)}, with maps induced by inclusion.
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Relate Multiple Samples
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Relate Multiple Samples

How do we give a summary of the data?
Will it play nicely with time varying persistence diagrams?

Paul Bendich (Duke) Probabilistic Fréchet Means on Persistence Diagrams July 15, 2013 11 / 33



Relate Multiple Samples

How do we give a summary of the data?
Will it play nicely with time varying persistence diagrams?
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Significance Testing

Suppose we obtain N points X in unit d-ball.

We compute the diagram and are impressed with a feature.

Should we be impressed?
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Towards Topological Null Hypothesis
Experiment: draw N points uniformly from d-ball and compute
diagram.
Question: what is expected diagram?
Hope: repeat experiment many times, take mean diagram as answer.
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Diagrams in the Abstract

Abstract Persistence Diagram

An abstract persistence diagram
is a countable multiset of points
along with the diagonal,
∆ = {(x , x) ∈ R2 | x ∈ R}, with
points in ∆ having infinite
multiplicity.
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Wasserstein Distance on Dp

a
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p-Wasserstein distance for diagrams

Given diagrams X and Y , the distance between them is

Wp[Lq](X ,Y ) = inf
ϕ:X→Y

(∑
x∈X

(‖x − ϕ(x)‖q)p
)1/p

.
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Discrete vs continuous Wasserstein

Discrete

Given diagrams X and Y , the distance between them is

Wp[Lq](X ,Y ) = inf
ϕ:X→Y

(∑
x∈X

(‖x − ϕ(x)‖q)p
)1/p

.

Continuous

Given probability distributions, ν and η, on metric space (X, dX) is

Wp[dX](ν, η) =

[
inf

γ∈Γ(ν,η)

∫
X×X

dX(x , y)p dγ(x , y)

]1/p

where Γ(ν, η) is the space of distributions on X× X with marginals ν and
η respectively.
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The metric space (Dp,Wp)

The space of persistence diagrams is

Dp = {X |Wp[L2](X , d∅) <∞}

along with the p-Wasserstein metric, Wp[L2].

Theorem (Mileyko et. al.): (Dp,Wp) is complete and separable.
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Fréchet means

Let ν be a measure on a metric space (Y , d).

The Fréchet variance of ν is:

Varν = inf
x∈Y

[
Fν(x) =

∫
Y
d(x , y)2 dν(y) <∞

]
The set at which the value is obtained

E(ν) = {x |Fν(X ) = Varν}

is the Fréchet expectation of ν, also called Fréchet mean.
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Fréchet means in Dp: Existence

Theorem (Mileyko et. al.): Let ν be a probability measure on
(Dp,B(Dp)) with a finite second moment. If ν has compact support,
then E(ν) 6= ∅.
In particular, Fréchet means of finite sets of diagrams exist.
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Algorithm for Computation - Selections and Matchings
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Algorithm for Computation - Selections and Matchings

a

b cf

g

x

y

z

h

Definition

Given a set of diagrams
X1, · · · ,XN , a selection is a
choice of one point from each
diagram, where that point could
be ∆.
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Algorithm for Computation - Selections and Matchings
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Definition

The trivial selection for a
particular off-diagonal point
x ∈ Xi is the selection sx which
chooses x for Xi and ∆ for every
other diagram.
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Algorithm for Computation - Selections and Matchings
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dF d� d•

1 b x f
2 a ∆ ∆
3 ∆ y g
4 ∆ z ∆
5 ∆ ∆ h
6 c ∆ ∆


Definition

A matching is a set of selections
so that every off-diagonal point
of every diagram is part of
exactly one selection.
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Algorithm for Computation - Selections and Matchings

Definition

The mean of a selection is the
point which minimizes the sum of
the square distances to the
elements of the selection.
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Algorithm for Computation - Selections and Matchings

Definition

The mean of a matching,
meanX (G ), is a diagram in Dp

with a point at the mean of each
selection
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Problem: Fréchet means need not be unique!

a 2
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Problem: Fréchet means need not be unique!

a 2

1 b

a

1

2

b
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Solution: Randomize Matchings!
Note: non-uniquness of mean caused by non-uniqueness of optimal
matching.
Idea: consider all matchings, with probability weights.
Formally: if X = {X1, . . . ,XN} ⊆ Dp, then µX ∈ P(Dp), with:

Definition

µX =
∑
G

P(H = G ) δmeanX (G)

a 2

1 b
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What is H?
H is a matching-valued random variable (randomized coupling).
Perturb each diagram Xi to create random diagram X ′i .
Associate the optimal matching among the drawn diagrams to one of
the original matchings.
This defines a probability weight on each possible matching.

a 2

1 b

Paul Bendich (Duke) Probabilistic Fréchet Means on Persistence Diagrams July 15, 2013 26 / 33



The random diagram

Pick α > 0

Let η ∈ P(R2) be uniform on Bα(0) (other choices also work).

Define ηx to be the translation of η to x .

For each x ∈ Xi , make X ′i by:
1 Draw point from ηx
2 If contained in B‖x−∆‖(x), add it to X ′i .
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Example
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d ′F d ′� d ′©

1 b′ x ′ f ′

2 ∆ y ′ g ′

3 ∆ ∆ h′

4 ∆ z ′ ∆

.



dF d� d©

1 b x f
2 ∆ y g
3 ∆ ∆ h
4 ∆ z ∆
5 a ∆ ∆
6 c ∆ ∆

.
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Main Theorem

Let SM,K ⊆ Dp be diagrams with at most K dots, each with
persistence at most M.

Theorem

The map

(SM,K )N −→ P(SM,NK )
X = {X1, . . . ,XN} 7−→ µX

is Hölder continuous with exponent 1
2 . That is, there exists a constant C

such that the inequality

W2(µX , µY ) ≤ C
√

W2(X ,Y )

holds for all pairs of sets of N diagrams.
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Outline of the Proof

Wasserstein distance on P(Dp)

Wp(ν, η) =

[
inf

γ∈Γ(ν,η)

∫
Dp×Dp

W2(X ,Y )p dγ(X ,Y )

]1/p
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Outline of the Proof - Pairing

The problem

It’s easy to associate parts of the matching if a point x ∈ Xi is matched
with and off-diagonal point y ∈ Yi under ϕi : Xi → Yi .
What do you do with the rest of the points?

Definition

X̃i = {x ∈ Xi | ϕi (x) 6= ∆}
Ỹi = {y ∈ Yi | ϕ−1

i (y) 6= ∆}
GX = matchings on X1, · · · ,XN

G
X̃

//

i
X̃

��

G
Ỹ

i
Ỹ

��
GX // GY

Im (i
X̃

)↔ Im (i
X̃

)
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Outline of the Proof - Pairing
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Outline of the Proof - Big Inequality

Wp(µX , µY ) ≤∑
(G ,H)
∈GX×GY
Paired

min{P(HX = G ),P(HY = H)} ·Wp(meanX (G ),meanY (H))

+
∑

(G ,H)∈GX×GY
Paired

|P(HX = G )− P(HY = H)| ·M

+
∑

G∈GX unpaired

|P(HX = G )| ·M +
∑

H∈GY unpaired

|P(HY = H)| ·M
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Further Goals

Find explicit relation between older definition and ours.

Do some honest statistics (laws of large numbers, ...)

Get rid of SM,K crutch.
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