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Frames and intensity measurements

A frame is a collection of vectors
Φ = {φ1, . . . , φn} spanning Cd .

A frame defines intensity measurements of a signal x ∈ Cd :

|〈φk , x〉|2 = tr(φkφ
∗
kxx∗) for k = 1, . . . , n.

Phase Retrieval: Recover xx∗ from tr(φkφ
∗
kxx∗).

Some Questions: How do we recover the signal x?

When is recovery of signals in Cd possible?
When is recovery of signals in Cd stable?
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Motivation and Applications

In practice the signal is some structure that is too
small (DNA, crystals) or far away (astronomical phenomena)

or obscured (medical images) to observe directly.

Figure 1: A typical setup for structured illuminations in diffraction imaging using a phase mask.

Figure 2: A typical setup for structured illuminations in diffraction imaging using oblique illumina-
tions. The left image shows direct (on-axis) illumination and the right image corresponds to oblique
(off-axis) illumination.

6

(picture from Candés-Eldar-Strohmer-Voroninski 2013)

If some measurements are
possible, then one hopes to
reconstruct this structure.

Here our signal x lies in a finite-

dimensional space (Cd), and its

measurements are modeled

by |〈φk , x〉|2 for φk ∈ Cd .
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Phase Retrieval: recovering a vector from its measurements

When do the measurements tr(φkφ
∗
kxx∗) determine xx∗ ∈ Cd×d

Herm?

That is, for what collections of vectors Φ = (φ1 . . . φn) is the map

MΦ :

{
rank-1 Hermitian
d × d matrices

}
→ Rn given by X 7→ (tr(φkφ

∗
k · X ))k

injective?
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How many measurements for injectivity? About 4d .

(Heinosaari–Mazzarella–Wolf, 2011):

For n < 4d − 2α− 4, MΦ is not injective,

where α = # of 1’s in binary expansion of d−1.

Conjecture (Bandeira-Cahill-Mixon-Nelson, 2013)

(a) If n < 4d − 4, then MΦ is not injective.

(b) If n ≥ 4d − 4, then MΦ is injective for generic Φ.

(Conca–Edidin–Hering–V., 2014)

For n ≥ 4d − 4, MΦ is injective for generic Φ ∈ Cd×n.

If d = 2k + 1 and n < 4d − 4, MΦ is not injective.
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A nice reformulation of non-injectivity

Observation (Bandeira-Cahill-Mixon-Nelson):

MΦ is non-injective ⇔ ∃ a nonzero matrix Q ∈ Cd×d
Herm with

rank(Q) ≤ 2 and φ∗kQφk = 0 for each 1 ≤ k ≤ n. (*)

Why? MΦ(x) =MΦ(y) ⇔ φ∗kxx∗φk = φ∗kyy∗φk ∀k

⇔ φ∗k(xx∗ − yy∗︸ ︷︷ ︸
rank 2

)φk = 0 ∀k

More algebraic question: When does (spanR{φ1φ
∗
1, . . . , φnφ

∗
n})⊥

intersect the rank-2 locus of Cd×d
Herm?
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Getting (Real) Algebraic

Consider the incidence set{
(Φ,Q) ∈ P(Cd×n)× P(Cd×d

Herm) : rank(Q) ≤ 2 and φ∗kQφk = 0 ∀k
}
.

Φ ∈ Cd×n −→ A + iB where A,B ∈ Rd×n

Q ∈ Cd×d
Herm −→ X + iY where X ∈ Rd×d

sym , Y ∈ Rd×d
skew

incidence set −→ real projective variety
in P((Rd×n)2)× P(Rd×d

sym × Rd×d
skew )

Consequence: The bad frames, {Φ :MΦ is non-injective},
are the projection of a real (projective) variety.

(⇒ a closed semialgebraic subset of P((Rd×n)2))
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Dimensions

The rank ≤ 2 matrices in Cd×d are a variety of

dimension 4d − 4 and degree

(
2d − 3

d − 2

)2

/(2d − 3).

Theorem. For n ≥ 4d − 4 and generic Φ ∈ Cd×n ∼= (Rd×n)2,

there is no non-zero matrix of rank ≤ 2 in {φ1φ
∗
1, . . . , φnφ

∗
n}⊥.

This means there is a polynomial f (A,B) in 2dn variables that
vanishes on {(A,B) ∈ (Rd×n)2 :MA+iB is non-injective}.
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Example: d = 2, n = 4d − 4 = 4

A 2× 2 Hertmitian matrix Q defines the real quadratic polynomial

q(a, b, c , d) =
(
a− ic b − id

)( x11 x12 + iy12

x12 − iy12 x22

)(
a + ic
b + id

)

= x11(a2 + c2) + x22(b2 + d2) + 2x12(ab + cd) + 2y12(bc − ad).

Since any Q has rank ≤ 2, the frame

Φ =

(
a1 + ic1 a2 + ic2 a3 + ic3 a4 + ic4

b1 + id1 b2 + id2 b3 + id3 b4 + id4

)
defines injective measurements MΦ whenever

det

a2
1 + c2

1 b2
1 + d2

1 a1b1 + c1d1 b1c1 − a1d1

a2
2 + c2

2 b2
2 + d2

2 a2b2 + c2d2 b2c2 − a2d2

a2
3 + c2

3 b2
3 + d2

3 a3b3 + c3d3 b3c3 − a3d3

a2
4 + c2

4 b2
4 + d2

4 a4b4 + c4d4 b4c4 − a4d4

 6= 0.
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Fewer measurements: d = 2a + 1

When n < 4d − 4, the linear space {Q ∈ Cd×d : φ∗kQφk = 0 ∀k} will
contain rank-2 matrices. Must one be Hermitian?

When d = 2a + 1, then the degree of {rk − 2 in Cd×d} is odd.

⇒ For any Φ ∈ Cd×n with n < 4d − 4, MΦ is not injective.

Example: d = 3, 4d − 5 = 7

For φ1, . . . , φ7 ∈ C3, we expect {Q : φ∗kQφk = 0} = a line in P(C3×3).

⇒ {Q : φ∗kQφk = 0} ∩ V (det(Q)) = 3 points in P(C3×3).

Since 3 is odd and the linear space {Q : φ∗kQφk = 0} is invariant under
Q 7→ Q∗, at least one rank-2 matrix must be Hermitian.

→ MΦ is not injective
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Fewer measurements: d = 4

We parametrize C4×4
Herm with R16:

Q =


x11 x12 + iy12 x13 + iy13 x14 + iy14

x12 − iy12 x22 x23 + iy23 x24 + iy24

x13 − iy13 x23 − iy23 x33 x34 + iy34

x14 − iy14 x24 − iy24 x34 − iy34 x44

 .

Let mjk be the 3× 3 minor det(Q[4]\j , [4]\k) ∈ Q[i ][xjk , yjk ].

The matrix Q has rank ≤ 2 ⇔ mjk = 0 for all 1 ≤ j , k ≤ 4.

The map MΦ is injective if and only if there is no real non-zero
solution (x11, . . . , y34) ∈ R16 to the equations

m11 = m12 = . . . = m44 = 0 and φ∗kQφk = 0 ∀ k .
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An injective frame with d = 4, n = 11

Φ =
1 0 0 0 1 1 1 1 1 1 1
0 1 0 0 9i 1− i −2 + 4i −3 + i 3− 3i −3 + 5i −3 + 8i
0 0 1 0 −5− 7i −5− 2i −4− 2i 1− 8i −8 + 7i 5 + 6i 5− 5i
0 0 0 1 −6− 7i −1− 8i 3 + 8i 7− 6i −6− 2i 2i −6− 4i



For k = 1, . . . , 11, let `k = φ∗kQφk ∈ R[xjk , yjk : 1≤ j≤k≤4].

For example, `1 = x11 and

`5 = x11 − 10x13 − 12x14 + 81x22 − 126x23 − 126x24 + 74x33 + 158x34

+ 85x44 − 18y12 + 14y13 + 14y14 − 90y23 − 108y24 + 14y34.

We can use symbolic methods to verify that there is no non-zero
solution (xjk , yjk) ∈ R16 to m11 = . . . = m44 = `1 = . . . `11 = 0.

⇒MΦ is injective
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Certifying injectivity of Φ

We want to show that there are no non-zero solutions to

m11 = m12 = . . . = m44 = `1 = . . . `11 = 0. (*)

(Actually, the solution set is 10 pairs of complex conjugate lines in C16.)

Strategy:

1. Find f ∈ Q[x34, y34] satisfying:
f (x34, y34) = 0 if and only if the point (x34, y34) ∈ C2 can be
extended to a solution (xjk , yjk) ∈ C16 of (*). GB

2. Check that f (x34, 1) has no real roots. Sturm Sequences

3. Check that there are no non-zero solutions (xjk , yjk) ∈ C16

to (*) with y34 = 0. GB
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The degree-20 polynomial f

f (x , y) =

47599685697454466246329412358483179722150043354437125082025800902606928597206272254845887202098485215232 · x20

−940875789867758769838520754403201268675774719194241940388656177785644194342166892793123967870118511091712 · x19y

+8079760677210192071804090111142610477024725441627364213141746522285905327070793719538623768982021441867008 · x18y 2

−40390761193855122277381198616744763479497680895608897593386520810794749041801633796968256299345250567989120 · x17y 3

+131616369916171208334977339064503371859576391268929064468118935900017365295185627042078382592920359023963120 · x16y 4

−293014395329583025877260372789628942263338515685834588963896339613217690953560112063134591204469166903730584 · x15y 5

+458069738032730695996144135248791338007569710877529938378092745783077549558976157025550745961972225340079644 · x14y 6

−517369071593627219847520943924454458561147451524495675098907021370976281217299640311489465704692368615264514 · x13y 7

+452598979230255288442671627934707378002747893014717388494818021654528875197345624154508626114037972901500688 · x12y 8

−372648962908998912506284086331829334659704158038572388762607081397540397891875288020327841800275807896331363 · x11y 9

+368232864821580663608362507224731842224816948166375792251958189898413349943059199991850745920857587346422247 · x10y 10

−403635711731885683831862286003879871368285836090576953930238823174701111263082513174328319091824845878408842 · x9y 11

+390921191544945060106454097348764080175218877410156079207976994796588444804574583525852046116133406063492232 · x8y 12

−303282246743535677380017745889681371136540419380112690433239947491979764226862379182777142974211242201436038 · x7y 13

+184479380320049045197686505443823960153384609428987780432573005109397657926440688558298683493092343685387706 · x6y 14

−87485311349460982824448992498046043498427396179321650198242819939653352363165057564278033789500273373973662 · x5y 15

+32016520763724676437134174594818955536984857769461915546273804322365856693290090903851788729777275040411744 · x4y 16

−8843043103455739360596137302837349740785483274132912552686735695145524362028265118639059872092039716064999 · x3y 17

+1775125426181341100587099980276312627299716879819457817398603067248151810981307579223879621865024794510283 · x2y 18

−241527118652311488433038772168913074025991214453188628647589057033246072076996489577531666185336332308462 · xy 19

+17892217832720483440399845902831090202434763229104212220658085110841220106091148070445766234106381722000 · y 20
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The set of injective frames

Both {Φ′ :MΦ′ is injective} and {Φ′ :MΦ′ is non-injective} are
full-dimensional semialgebraic sets in C4×11 ∼= (R4×11)2.

For example, we can vary the last entry of Φ = 1 0 0 0 1 1 1 1 1 1 1
0 1 0 0 9i 1− i −2 + 4i −3 + i 3− 3i −3 + 5i −3 + 8i
0 0 1 0 −5− 7i −5− 2i −4− 2i 1− 8i −8 + 7i 5 + 6i 5− 5i
0 0 0 1 −6− 7i −1− 8i 3 + 8i 7− 6i −6− 2i 2i a + ib

 .

The set {Φ′ :MΦ′ is injective} contains
an open ball around Φ.

-7 -6 -5 -4
a

-3

-4

-5

-6

-7

b
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Final thoughts and questions

Algebraic methods are useful for some problems in
frame theory, especially computing small examples.

Modified 4d − 4 Conjecture.

For Φ ∈ Cd×4d−5, the probability pd that MΦ

is injective is less than 1 and pd → 0 as d →∞.

-7 -6 -5 -4
a

-3

-4

-5

-6

-7

b

I What is the smallest n for which there exists
Φ ∈ Cd×n with MΦ injective?

I For d 6= 2k + 1 and n = 4d − 5, can we
construct Φ ∈ Cd×n with MΦ injective?

I How can we efficiently guarantee injectivity?

Thanks!
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