Definitions
The Main Problem
Applications
Outline of the proof

Full Spark Gabor Frames in Finite Dimensions

Romanos-Diogenes Malikiosis

TU Berlin

Bremen, July 29, 2015

$$T(x_0, x_1, \dots, x_{N-1}) = (x_{N-1}, x_0, \dots, x_{N-2})$$

Modulation operator (
$$\omega = \exp(2\pi i/N)$$
)

$$M(x_0, x_1, \dots, x_{N-1}) = (x_0, \omega x_1, \dots, \omega^{N-1} x_{N-1})$$

$$T(x_0, x_1, \dots, x_{N-1}) = (x_{N-1}, x_0, \dots, x_{N-2})$$

Modulation operator ($\omega = \exp(2\pi i/N)$)

$$M(x_0, x_1, \dots, x_{N-1}) = (x_0, \omega x_1, \dots, \omega^{N-1} x_{N-1})$$

Commutativity (up to phase): $MT = \omega TM$.

$$T(x_0, x_1, \dots, x_{N-1}) = (x_{N-1}, x_0, \dots, x_{N-2})$$

Modulation operator ($\omega = \exp(2\pi i/N)$)

$$M(x_0, x_1, \ldots, x_{N-1}) = (x_0, \omega x_1, \ldots, \omega^{N-1} x_{N-1})$$

Commutativity (up to phase): $MT = \omega TM$. T and M generate the Weyl-Heisenberg group:

$$\left\{\omega^{\mu} M^{\lambda} T^{\kappa} | 0 \le \kappa, \lambda, \mu \le N - 1\right\}$$

$$T(x_0, x_1, \dots, x_{N-1}) = (x_{N-1}, x_0, \dots, x_{N-2})$$

Modulation operator ($\omega = \exp(2\pi i/N)$)

$$M(x_0, x_1, \dots, x_{N-1}) = (x_0, \omega x_1, \dots, \omega^{N-1} x_{N-1})$$

Commutativity (up to phase): $MT = \omega TM$. T and M generate the Weyl-Heisenberg group:

$$\left\{\omega^{\mu} M^{\lambda} T^{\kappa} | 0 \le \kappa, \lambda, \mu \le N - 1\right\}$$

Modulo phases, it is isomorphic to \mathbb{Z}_N^2 . Representatives: $M^{\lambda}T^{\kappa}$

$$T(x_0, x_1, \dots, x_{N-1}) = (x_{N-1}, x_0, \dots, x_{N-2})$$

Modulation operator ($\omega = \exp(2\pi i/N)$)

$$M(x_0, x_1, \dots, x_{N-1}) = (x_0, \omega x_1, \dots, \omega^{N-1} x_{N-1})$$

Commutativity (up to phase): $MT = \omega TM$. T and M generate the Weyl-Heisenberg group:

$$\left\{\omega^{\mu} M^{\lambda} T^{\kappa} | 0 \le \kappa, \lambda, \mu \le N - 1\right\}$$

Modulo phases, it is isomorphic to \mathbb{Z}_N^2 . Representatives: $M^{\lambda}T^{\kappa}$

Definition

A Gabor frame with window $\varphi \in \mathbb{C}^N$ is the set of all time-frequency translates of φ :

$$M^{\lambda}T^{\kappa}\varphi$$
, $0 \le \kappa, \lambda \le N-1$,

also called a Weyl-Heisenberg orbit.

For any $\Lambda \subseteq \mathbb{Z}_N^2$ we denote

$$(\varphi, \Lambda) = \left\{ M^{\lambda} T^{\kappa} \varphi | (\kappa, \lambda) \in \Lambda \right\}$$

Definition

A Gabor frame with window $\varphi \in \mathbb{C}^N$ is the set of all time-frequency translates of φ :

$$M^{\lambda}T^{\kappa}\varphi$$
, $0 \le \kappa, \lambda \le N-1$,

also called a Weyl-Heisenberg orbit.

For any $\Lambda \subseteq \mathbb{Z}_N^2$ we denote

$$(\varphi, \Lambda) = \left\{ M^{\lambda} T^{\kappa} \varphi | (\kappa, \lambda) \in \Lambda \right\}$$

Problem (Lawrence, Pfander, Walnut, 2005)

Are there $\varphi \in \mathbb{C}^N$ such that $(\varphi, \mathbb{Z}_N^2)$ has full spark, i. e. (φ, Λ) is linearly independent for all $\Lambda \subseteq \mathbb{Z}_N^2$ with $|\Lambda| = N$?

Progress

- N prime, LPW, 2005.
- N = 4, 6, Krahmer, Pfander, Rashkov, 2008.
- N = 8, Appleby, Bengtsson, Blanchfield, Dang, 2013.
- N ∈ N, M, 2013.

Applications

- Signal recovery
- Operator identification and sampling
- Compressive sensing

$$(\varphi, \mathbb{Z}_N^2) = \{\varphi_k\}$$
 is an equal norm tight frame: we have $\|\varphi_k\| = \|\varphi\|$ and

$$\sum_{k} |\langle f, \varphi_k \rangle|^2 = N ||\varphi||^2 ||f||^2.$$

If $(\varphi, \mathbb{Z}_N^2)$ has full spark, then it is also *maximally robust to* erasures:

 $(arphi,\mathbb{Z}_N^2)=\{arphi_k\}$ is an equal norm tight frame: we have $\|arphi_k\|=\|arphi\|$ and

$$\sum_{k} |\langle f, \varphi_k \rangle|^2 = N \|\varphi\|^2 \|f\|^2.$$

If $(\varphi, \mathbb{Z}_N^2)$ has full spark, then it is also maximally robust to erasures: for any $K \subseteq \mathbb{Z}_N^2$ with $|K| \ge N$ we can reconstruct f from $\{\langle f, \varphi_k \rangle\}_{k \in K}$.

 $(\varphi, \mathbb{Z}_N^2) = \{\varphi_k\}$ is an equal norm tight frame: we have $\|\varphi_k\| = \|\varphi\|$ and

$$\sum_{k} |\langle f, \varphi_k \rangle|^2 = N ||\varphi||^2 ||f||^2.$$

If $(\varphi, \mathbb{Z}_N^2)$ has full spark, then it is also maximally robust to erasures: for any $K \subseteq \mathbb{Z}_N^2$ with $|K| \ge N$ we can reconstruct f from $\{\langle f, \varphi_k \rangle\}_{k \in K}$.

$$f = \sum_{k \in K} \langle f, \varphi_k \rangle \tilde{\varphi}_k,$$

where $\{\tilde{\varphi}_k\}_{k\in K}$ is a dual frame of $\{\varphi_k\}_{k\in K}$.

 $(\varphi, \mathbb{Z}_N^2) = \{\varphi_k\}$ is an equal norm tight frame: we have $\|\varphi_k\| = \|\varphi\|$ and

$$\sum_{k} |\langle f, \varphi_k \rangle|^2 = N ||\varphi||^2 ||f||^2.$$

If $(\varphi, \mathbb{Z}_N^2)$ has full spark, then it is also maximally robust to erasures: for any $K \subseteq \mathbb{Z}_N^2$ with $|K| \ge N$ we can reconstruct f from $\{\langle f, \varphi_k \rangle\}_{k \in K}$.

$$f = \sum_{k \in K} \langle f, \varphi_k \rangle \tilde{\varphi}_k,$$

where $\{\tilde{\varphi}_k\}_{k\in\mathcal{K}}$ is a dual frame of $\{\varphi_k\}_{k\in\mathcal{K}}$. The only previously known equal norm tight frames maximally robust to erasures were the harmonic frames.

 $(arphi,\mathbb{Z}_N^2)=\{arphi_k\}$ is an equal norm tight frame: we have $\|arphi_k\|=\|arphi\|$ and

$$\sum_{k} |\langle f, \varphi_k \rangle|^2 = N \|\varphi\|^2 \|f\|^2.$$

If $(\varphi, \mathbb{Z}_N^2)$ has full spark, then it is also maximally robust to erasures: for any $K \subseteq \mathbb{Z}_N^2$ with $|K| \ge N$ we can reconstruct f from $\{\langle f, \varphi_k \rangle\}_{k \in K}$.

$$f = \sum_{k \in K} \langle f, \varphi_k \rangle \tilde{\varphi}_k,$$

where $\{\tilde{\varphi}_k\}_{k\in\mathcal{K}}$ is a dual frame of $\{\varphi_k\}_{k\in\mathcal{K}}$. The only previously known equal norm tight frames maximally robust to erasures were the harmonic frames.

Problem

Reconstruct a vector that is a linear combination of at most s elements of the form $M_{\mathcal{E}}T_{\mathbf{x}}\varphi$ (sparse signal).

Identify \mathcal{H}_s , which is the set of all operators that are obtained as linear combinations of at most s time-frequency operators, $M_{\xi}T_x$.

Problem

Reconstruct a vector that is a linear combination of at most s elements of the form $M_{\mathcal{E}}T_{x}\varphi$ (sparse signal).

Identify \mathcal{H}_s , which is the set of all operators that are obtained as linear combinations of at most s time-frequency operators, $M_\xi T_x$. So, if $f = H\varphi$ for some $H \in \mathcal{H}_s$, can we recover a representation of f with respect to $(\varphi, G \times \hat{G})$, such that the number of nonzero coefficients is as small as possible (smaller than s)?

Problem

Reconstruct a vector that is a linear combination of at most s elements of the form $M_{\xi}T_{x}\varphi$ (sparse signal).

Identify \mathcal{H}_s , which is the set of all operators that are obtained as linear combinations of at most s time-frequency operators, $M_\xi T_x$. So, if $f = H\varphi$ for some $H \in \mathcal{H}_s$, can we recover a representation of f with respect to $(\varphi, G \times \hat{G})$, such that the number of nonzero coefficients is as small as possible (smaller than s)? If $(\varphi, G \times \hat{G})$ has full spark, then this can be done as long as

If $(\varphi, G \times G)$ has full spark, then this can be done as long as $s \leq N/2$.

Problem

Reconstruct a vector that is a linear combination of at most s elements of the form $M_{\mathcal{E}}T_{x}\varphi$ (sparse signal).

Identify \mathcal{H}_s , which is the set of all operators that are obtained as linear combinations of at most s time-frequency operators, $M_\xi T_x$. So, if $f = H \varphi$ for some $H \in \mathcal{H}_s$, can we recover a representation of f with respect to $(\varphi, G \times \hat{G})$, such that the number of nonzero coefficients is as small as possible (smaller than s)? If $(\varphi, G \times \hat{G})$ has full spark, then this can be done as long as $s \leq N/2$.

SIC-POVM

Problem

Are there $\varphi_1, \ldots, \varphi_{N^2} \in \mathbb{C}^N$ such that $\|\varphi_i\| = 1$ and $|\langle \varphi_i, \varphi_j \rangle| = \frac{1}{\sqrt{N+1}}$ for all $i \neq j$?

Zauner ('99) conjectured that there is $\varphi \in \mathbb{C}^N$ such that $(\varphi, \mathbb{Z}_N^2)$ is a solution. Verified numerically for $N \leq 67$. Such a set is also a complex 2-design.

The main idea

Let $\Lambda \subseteq \mathbb{Z}_N^2$ with $|\Lambda| = N$. The column vectors $M^{\lambda} T^{\kappa} z$ form a matrix, denoted by D_{Λ} , where

$$z=(z_0,z_1,\ldots,z_{N-1})\in\mathbb{C}^N$$

is a variable vector. Define

$$P_{\Lambda}(z) = \det(D_{\Lambda}).$$

 P_{Λ} is a homogeneous polynomial in N complex variables, of degree N. The set of zeroes of P_{Λ} is either the entire space \mathbb{C}^{N} or has measure zero.

$$(z,\mathbb{Z}_N^2)$$
 for $N=2,3$.

$$\left(\begin{array}{cc|c} z_0 & z_0 & z_1 & z_1 \\ z_1 & -z_1 & z_0 & -z_0 \end{array}\right)$$

$$\begin{pmatrix} z_0 & z_0 & z_0 & z_2 & z_2 & z_2 & z_1 & z_1 & z_1 \\ z_1 & \omega z_1 & \omega^2 z_1 & z_0 & \omega z_0 & \omega^2 z_0 & z_2 & \omega z_2 & \omega^2 z_2 \\ z_2 & \omega^2 z_2 & \omega z_2 & z_1 & \omega^2 z_1 & \omega z_1 & z_0 & \omega^2 z_0 & \omega z_0 \end{pmatrix}$$

Examples

Let
$$\Lambda=\{(0,1),(1,0)\}\subseteq\mathbb{Z}_2^2.$$

$$D_{\Lambda}=\left(\begin{array}{cc}z_0&z_1\\-z_1&z_0\end{array}\right),\quad P_{\Lambda}=z_0^2+z_1^2$$

Examples

Let $\Lambda = \{(0,0), (0,1), (1,1)\} \subseteq \mathbb{Z}_3^2$. The matrix is

$$D_{\Lambda} = \begin{pmatrix} z_0 & z_0 & z_2 \\ z_1 & \omega z_1 & \omega z_0 \\ z_2 & \omega^2 z_2 & \omega^2 z_1 \end{pmatrix}$$

$$P_{\Lambda} = z_0 z_1^2 + \omega z_0^2 z_2 + \omega^2 z_1 z_2^2 - z_0^2 z_2 - \omega^2 z_0 z_1^2 - \omega z_1 z_2^2$$

= $(1 - \omega^2) z_0 z_1^2 + (\omega - 1) z_0^2 z_2 + (\omega^2 - \omega) z_1 z_2^2$

$$D_{\Lambda} = \begin{pmatrix} z_{0} & z_{0} & z_{0} & z_{2} & z_{2} & z_{1} \\ z_{1} & \omega^{2}z_{1} & \omega^{3}z_{1} & \omega z_{3} & \omega^{5}z_{3} & z_{2} \\ z_{2} & \omega^{4}z_{2} & z_{2} & \omega^{2}z_{4} & \omega^{4}z_{4} & z_{3} \\ z_{3} & z_{3} & \omega^{3}z_{3} & \omega^{3}z_{5} & \omega^{3}z_{5} & z_{4} \\ z_{4} & \omega^{2}z_{4} & z_{4} & \omega^{4}z_{0} & \omega^{2}z_{0} & z_{5} \\ z_{5} & \omega^{4}z_{5} & \omega^{3}z_{5} & \omega^{5}z_{1} & \omega z_{1} & z_{0} \end{pmatrix}$$

$$D_{\Lambda} = \begin{pmatrix} z_{0} & z_{0} & z_{0} & z_{2} & z_{2} & z_{1} \\ z_{1} & \omega^{2}z_{1} & \omega^{3}z_{1} & \omega z_{3} & \omega^{5}z_{3} & z_{2} \\ z_{2} & \omega^{4}z_{2} & z_{2} & \omega^{2}z_{4} & \omega^{4}z_{4} & z_{3} \\ z_{3} & z_{3} & \omega^{3}z_{3} & \omega^{3}z_{5} & \omega^{3}z_{5} & z_{4} \\ z_{4} & \omega^{2}z_{4} & z_{4} & \omega^{4}z_{0} & \omega^{2}z_{0} & z_{5} \\ z_{5} & \omega^{4}z_{5} & \omega^{3}z_{5} & \omega^{5}z_{1} & \omega z_{1} & z_{0} \end{pmatrix}$$

$$D_{\Lambda} = \begin{pmatrix} z_{0} & z_{0} & z_{0} & z_{2} & z_{2} & z_{1} \\ z_{1} & \omega^{2}z_{1} & \omega^{3}z_{1} & \omega z_{3} & \omega^{5}z_{3} & z_{2} \\ z_{2} & \omega^{4}z_{2} & z_{2} & \omega^{2}z_{4} & \omega^{4}z_{4} & z_{3} \\ z_{3} & z_{3} & \omega^{3}z_{3} & \omega^{3}z_{5} & \omega^{3}z_{5} & z_{4} \\ z_{4} & \omega^{2}z_{4} & z_{4} & \omega^{4}z_{0} & \omega^{2}z_{0} & z_{5} \\ z_{5} & \omega^{4}z_{5} & \omega^{3}z_{5} & \omega^{5}z_{1} & \omega z_{1} & z_{0} \end{pmatrix}$$

$$D_{\Lambda} = \begin{pmatrix} z_{0} & z_{0} & z_{2} & z_{2} & z_{1} \\ z_{1} & \omega^{2}z_{1} & \omega^{3}z_{1} & \omega z_{3} & \omega^{5}z_{3} & z_{2} \\ z_{2} & \omega^{4}z_{2} & z_{2} & \omega^{2}z_{4} & \omega^{4}z_{4} & z_{3} \\ z_{3} & z_{3} & \omega^{3}z_{3} & \omega^{3}z_{5} & \omega^{3}z_{5} & z_{4} \\ z_{4} & \omega^{2}z_{4} & z_{4} & \omega^{4}z_{0} & \omega^{2}z_{0} & z_{5} \\ z_{5} & \omega^{4}z_{5} & \omega^{3}z_{5} & \omega^{5}z_{1} & \omega z_{1} & z_{0} \end{pmatrix}$$

$$D_{\Lambda} = \begin{pmatrix} z_{0} & z_{0} & z_{0} & z_{2} & z_{2} & z_{1} \\ z_{1} & \omega^{2}z_{1} & \omega^{3}z_{1} & \omega z_{3} & \omega^{5}z_{3} & z_{2} \\ z_{2} & \omega^{4}z_{2} & z_{2} & \omega^{2}z_{4} & \omega^{4}z_{4} & z_{3} \\ z_{3} & z_{3} & \omega^{3}z_{3} & \omega^{3}z_{5} & \omega^{3}z_{5} & z_{4} \\ z_{4} & \omega^{2}z_{4} & z_{4} & \omega^{4}z_{0} & \omega^{2}z_{0} & z_{5} \\ \hline z_{5} & \omega^{4}z_{5} & \omega^{3}z_{5} & \omega^{5}z_{1} & \omega z_{1} & z_{0} \end{pmatrix}$$

The monomial is $z_0z_1z_4z_5^3$.

$$D_{\Lambda} = \begin{pmatrix} z_{0} & z_{0} & z_{0} & z_{2} & z_{2} & z_{1} \\ z_{1} & \omega^{2}z_{1} & \omega^{3}z_{1} & \omega z_{3} & \omega^{5}z_{3} & z_{2} \\ z_{2} & \omega^{4}z_{2} & z_{2} & \omega^{2}z_{4} & \omega^{4}z_{4} & z_{3} \\ z_{3} & z_{3} & \omega^{3}z_{3} & \omega^{3}z_{5} & \omega^{3}z_{5} & z_{4} \\ z_{4} & \omega^{2}z_{4} & z_{4} & \omega^{4}z_{0} & \omega^{2}z_{0} & z_{5} \end{pmatrix} \underbrace{z_{5} \quad \omega^{4}z_{5} \quad \omega^{3}z_{5}}_{D_{0}} \underbrace{D_{5}}_{D_{4}}$$

The monomial is $z_0z_1z_4z_5^3$.

Diagonal Union of Blocks (DUB)

Definition

Write $D_{\Lambda} = (D_0|D_1|\cdots|D_{N-1})$, where the columns of D_i have z_0 in the ith row. If D_i is a $N \times I_i$ matrix, then a DUB is a union of square submatrices B_0, \ldots, B_{N-1} containing a diagonal, such that B_i is a $I_i \times I_i$ submatrix of D_i .

For $\sigma = \iota$ we have

$$c_{\iota}Z^{\iota} = egin{bmatrix} z_{0} & z_{0} & z_{0} \ z_{1} & \omega^{2}z_{1} & \omega^{3}z_{1} \ z_{2} & \omega^{4}z_{2} & z_{2} \end{bmatrix} \cdot egin{bmatrix} \omega^{3}z_{5} & \omega^{3}z_{5} \ \omega^{4}z_{0} & \omega^{2}z_{0} \end{bmatrix} \cdot |z_{0}|,$$

50

$$c_{\iota} = egin{bmatrix} 1 & 1 & 1 \ 1 & \omega^2 & \omega^3 \ 1 & \omega^4 & 1 \end{bmatrix} \cdot egin{bmatrix} \omega^3 & \omega^3 \ \omega^4 & \omega^2 \end{bmatrix} \cdot |1|
eq 0$$

For $\sigma = \iota$ we have

$$c_{\iota}Z^{\iota} = \begin{vmatrix} z_0 & z_0 & z_0 \\ z_1 & \omega^2 z_1 & \omega^3 z_1 \\ z_2 & \omega^4 z_2 & z_2 \end{vmatrix} \cdot \begin{vmatrix} \omega^3 z_5 & \omega^3 z_5 \\ \omega^4 z_0 & \omega^2 z_0 \end{vmatrix} \cdot |z_0|,$$

so

$$c_\iota = egin{bmatrix} 1 & 1 & 1 \ 1 & \omega^2 & \omega^3 \ 1 & \omega^4 & 1 \end{bmatrix} \cdot egin{bmatrix} \omega^3 & \omega^3 \ \omega^4 & \omega^2 \end{bmatrix} \cdot |1|
eq 0$$

For $\sigma = (254)$ we have

$$c_{(254)}Z^{(254)} = \begin{vmatrix} z_0 & z_0 & z_0 \\ z_1 & \omega^2 z_1 & \omega^3 z_1 \\ z_5 & \omega^4 z_5 & \omega^3 z_5 \end{vmatrix} \cdot \begin{vmatrix} \omega^2 z_4 & \omega^4 z_4 \\ \omega^3 z_5 & \omega^3 z_5 \end{vmatrix} \cdot |z_5|,$$

so

$$c_{(254)} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega^3 \\ 1 & \omega^4 & \omega^3 \end{vmatrix} \cdot \begin{vmatrix} \omega^2 & \omega^4 \\ \omega^3 & \omega^3 \end{vmatrix} \cdot |1| \neq 0$$

If Z^{σ} is obtained from a unique DUB, then its coefficient in $P_{\Lambda} = \det(D_{\Lambda})$ is a product of Fourier minors.

Lawrence, Pfander, and Walnut observed that there are always monomials obtained uniquely.

If Z^{σ} is obtained from a unique DUB, then its coefficient in $P_{\Lambda} = \det(D_{\Lambda})$ is a product of Fourier minors. Lawrence, Pfander, and Walnut observed that there are always monomials obtained uniquely.

Theorem (Chebotarev, 1926)

If N is prime, all minors of the $N \times N$ Fourier matrix are nonzero.

If Z^{σ} is obtained from a unique DUB, then its coefficient in $P_{\Lambda} = \det(D_{\Lambda})$ is a product of Fourier minors.

Lawrence, Pfander, and Walnut observed that there are always monomials obtained uniquely.

Theorem (Chebotarev, 1926)

If N is prime, all minors of the $N \times N$ Fourier matrix are nonzero.

Theorem (LPW, 2005)

If N is prime, for almost all $\varphi \in \mathbb{C}^N$, the Gabor frame with window φ has full spark.

If Z^{σ} is obtained from a unique DUB, then its coefficient in $P_{\Lambda}=\det(D_{\Lambda})$ is a product of Fourier minors.

Lawrence, Pfander, and Walnut observed that there are always monomials obtained uniquely.

Theorem (Chebotarev, 1926)

If N is prime, all minors of the $N \times N$ Fourier matrix are nonzero.

Theorem (LPW, 2005)

If N is prime, for almost all $\varphi \in \mathbb{C}^N$, the Gabor frame with window φ has full spark.

If Z^{σ} is obtained from a unique DUB, then its coefficient in $P_{\Lambda}=\det(D_{\Lambda})$ is a product of Fourier minors.

Lawrence, Pfander, and Walnut observed that there are always monomials obtained uniquely.

Theorem (Chebotarev, 1926)

If N is prime, all minors of the $N \times N$ Fourier matrix are nonzero.

Theorem (LPW, 2005)

If N is prime, for almost all $\varphi \in \mathbb{C}^N$, the Gabor frame with window φ has full spark.

N composite? Focus on the *consecutive index monomial* (CI monomial).

N composite? Focus on the *consecutive index monomial* (CI monomial). It is the monomial that is obtained from the DUB containing the main diagonal, and is denoted simply by *Z*.

N composite? Focus on the *consecutive index monomial* (CI monomial). It is the monomial that is obtained from the DUB containing the main diagonal, and is denoted simply by Z.

Fact

If the CI monomial is obtained uniquely, then its coefficient is a product of Vandermonde determinants (up to phase), which are nonzero.

N composite? Focus on the *consecutive index monomial* (CI monomial). It is the monomial that is obtained from the DUB containing the main diagonal, and is denoted simply by *Z*.

Fact

If the CI monomial is obtained uniquely, then its coefficient is a product of Vandermonde determinants (up to phase), which are nonzero.

$$D_{\Lambda} = \begin{pmatrix} \begin{bmatrix} z_0 & z_0 & z_0 & z_2 & z_2 & z_1 \\ z_1 & \omega^2 z_1 & \omega^3 z_1 & \omega z_3 & \omega^5 z_3 & z_2 \\ z_2 & \omega^4 z_2 & z_2 & \omega^2 z_4 & \omega^4 z_4 & z_3 \\ z_3 & z_3 & \omega^3 z_3 & \omega^3 z_5 & \omega^3 z_5 & z_4 \\ z_4 & \omega^2 z_4 & z_4 & \omega^4 z_0 & \omega^2 z_0 & z_5 \\ z_5 & \omega^4 z_5 & \omega^3 z_5 & \omega^5 z_1 & \omega z_1 & z_0 \end{pmatrix}$$

$$c_{\iota} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega^3 \\ 1 & \omega^4 & 1 \end{vmatrix} \cdot \begin{vmatrix} \omega^3 & \omega^3 \\ \omega^4 & \omega^2 \end{vmatrix} \cdot |1| \neq 0$$

$$D_{\Lambda} = egin{bmatrix} z_0 & z_0 & z_0 & z_2 & z_2 & z_1 \ z_1 & \omega^2 z_1 & \omega^3 z_1 & \omega z_3 & \omega^5 z_3 & z_2 \ z_2 & \omega^4 z_2 & z_2 & \omega^2 z_4 & \omega^4 z_4 & z_3 \ z_3 & z_3 & \omega^3 z_3 & \omega^3 z_5 & \omega^3 z_5 & z_4 \ z_4 & \omega^2 z_4 & z_4 & \omega^4 z_0 & \omega^2 z_0 & z_5 \ z_5 & \omega^4 z_5 & \omega^3 z_5 & \omega^5 z_1 & \omega z_1 & z_0 \ \end{pmatrix} \ c_{\iota} = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & \omega^2 & \omega^3 \ 1 & \omega^4 & 1 \end{bmatrix} \cdot egin{bmatrix} \omega^3 & \omega^3 & \omega^3 \ \omega^4 & \omega^2 \ \end{bmatrix} \cdot |1|
eq 0$$

 $\sigma = \iota$. Monomial: $z_0^3 z_1 z_2 z_5$.

 $\sigma = (23)$. Monomial: $z_0^3 z_1 z_3 z_4$.

 $\sigma = (14)$. Monomial: $z_0^2 z_2 z_3 z_4 z_5$.

Associate Z^{σ} to the random variable X_{σ} , as follows: if

$$Z^{\sigma}=z_0^{\alpha_0}z_1^{\alpha_1}\cdots z_{N-1}^{\alpha_{N-1}}$$

define

$$P[X_{\sigma}=i]=\frac{\alpha_i}{N}$$

Then, $E[X_{\sigma}^2]$ is minimized *uniquely*.

Theorem

In any dimension, in every D_{Λ} , the consecutive index monomial Z is obtained uniquely.

The concentration of indices of the CI monomial around a certain number is maximal.

$\mathsf{Theorem}$

In any dimension, in every D_{Λ} , the consecutive index monomial Z is obtained uniquely.

The concentration of indices of the CI monomial around a certain number is maximal.

Theorem (M, 2013)

For any $N \in \mathbb{N}$, and for almost all $\varphi \in \mathbb{C}^N$, the Gabor frame with window φ has full spark.

Theorem

In any dimension, in every D_{Λ} , the consecutive index monomial Z is obtained uniquely.

The concentration of indices of the CI monomial around a certain number is maximal.

Theorem (M, 2013)

For any $N \in \mathbb{N}$, and for almost all $\varphi \in \mathbb{C}^N$, the Gabor frame with window φ has full spark.

Theorem

Let ξ be a transcendental number or an algebraic number whose degree over $\mathbb{Q}(\omega)$ is $> N(N-1)^2$. Then

$$(1, \xi, \xi^4, \dots, \xi^{(N-1)^2})$$

generates a full spark Gabor frame.

Corollary

Let $N \ge 4$ and ζ be any primitive root of unity, of order $(N-1)^4$. Then

$$(1,\zeta,\zeta^4,\ldots,\zeta^{(N-1)^2})$$

generates a full spark Gabor frame.

Theorem

Let ξ be a transcendental number or an algebraic number whose degree over $\mathbb{Q}(\omega)$ is $> N(N-1)^2$. Then

$$(1, \xi, \xi^4, \dots, \xi^{(N-1)^2})$$

generates a full spark Gabor frame.

Corollary

Let $N \ge 4$ and ζ be any primitive root of unity, of order $(N-1)^4$. Then

$$(1,\zeta,\zeta^4,\ldots,\zeta^{(N-1)^2})$$

generates a full spark Gabor frame.

Thank you!