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The Weyl-Heisenberg group
Gabor Frames

Cyclic shift operator

T (x0, x1, . . . , xN−1) = (xN−1, x0, . . . , xN−2)

Modulation operator (ω = exp(2πi/N))

M(x0, x1, . . . , xN−1) = (x0, ωx1, . . . , ω
N−1xN−1)

Commutativity (up to phase): MT = ωTM. T and M generate
the Weyl-Heisenberg group:{

ωµMλTκ|0 ≤ κ, λ, µ ≤ N − 1
}

Modulo phases, it is isomorphic to Z2
N . Representatives: MλTκ
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The Weyl-Heisenberg group
Gabor Frames

Definition

A Gabor frame with window ϕ ∈ CN is the set of all
time-frequency translates of ϕ:

MλTκϕ, 0 ≤ κ, λ ≤ N − 1,

also called a Weyl-Heisenberg orbit.

For any Λ ⊆ Z2
N we denote

(ϕ,Λ) =
{
MλTκϕ|(κ, λ) ∈ Λ

}
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Statement
Progress

Problem (Lawrence, Pfander, Walnut, 2005)

Are there ϕ ∈ CN such that (ϕ,Z2
N) has full spark, i. e. (ϕ,Λ) is

linearly independent for all Λ ⊆ Z2
N with |Λ| = N?
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Statement
Progress

Progress

� N prime, LPW, 2005.

� N = 4, 6, Krahmer, Pfander, Rashkov, 2008.

� N = 8, Appleby, Bengtsson, Blanchfield, Dang, 2013.

� N ∈ N, M, 2013.
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Signal Recovery
Compressive Sensing

Applications

� Signal recovery

� Operator identification and sampling

� Compressive sensing
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Signal Recovery
Compressive Sensing

Signal Recovery

(ϕ,Z2
N) = {ϕk} is an equal norm tight frame: we have

‖ϕk‖ = ‖ϕ‖ and ∑
k

|〈f , ϕk〉|2 = N‖ϕ‖2‖f ‖2.

If (ϕ,Z2
N) has full spark, then it is also maximally robust to

erasures:

for any K ⊆ Z2
N with |K | ≥ N we can reconstruct f from

{〈f , ϕk〉}k∈K .

f =
∑
k∈K
〈f , ϕk〉ϕ̃k ,

where {ϕ̃k}k∈K is a dual frame of {ϕk}k∈K . The only previously
known equal norm tight frames maximally robust to erasures were
the harmonic frames.
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Signal Recovery
Compressive Sensing

Compressive Sensing

Problem

Reconstruct a vector that is a linear combination of at most s
elements of the form MξTxϕ (sparse signal).

Identify Hs , which is the set of all operators that are obtained as
linear combinations of at most s time-frequency operators, MξTx .

So, if f = Hϕ for some H ∈ Hs , can we recover a representation
of f with respect to (ϕ,G × Ĝ ), such that the number of nonzero
coefficients is as small as possible (smaller than s)?
If (ϕ,G × Ĝ ) has full spark, then this can be done as long as
s ≤ N/2.
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of f with respect to (ϕ,G × Ĝ ), such that the number of nonzero
coefficients is as small as possible (smaller than s)?
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Signal Recovery
Compressive Sensing

SIC-POVM

Problem

Are there ϕ1, . . . , ϕN2 ∈ CN such that ‖ϕi‖ = 1 and
|〈ϕi , ϕj〉| = 1√

N+1
for all i 6= j?

Zauner (’99) conjectured that there is ϕ ∈ CN such that (ϕ,Z2
N) is

a solution. Verified numerically for N ≤ 67. Such a set is also a
complex 2-design.
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The main idea

Let Λ ⊆ Z2
N with |Λ| = N. The column vectors MλTκz form a

matrix, denoted by DΛ, where

z = (z0, z1, . . . , zN−1) ∈ CN

is a variable vector. Define

PΛ(z) = det(DΛ).

PΛ is a homogeneous polynomial in N complex variables, of degree
N. The set of zeroes of PΛ is either the entire space CN or has
measure zero.
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(z ,Z2
N) for N = 2, 3. (

z0 z0 z1 z1

z1 −z1 z0 −z0

)
 z0 z0 z0 z2 z2 z2 z1 z1 z1

z1 ωz1 ω2z1 z0 ωz0 ω2z0 z2 ωz2 ω2z2

z2 ω2z2 ωz2 z1 ω2z1 ωz1 z0 ω2z0 ωz0
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Examples

Let Λ = {(0, 1), (1, 0)} ⊆ Z2
2.

DΛ =

(
z0 z1

−z1 z0

)
, PΛ = z2

0 + z2
1
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Examples

Let Λ = {(0, 0), (0, 1), (1, 1)} ⊆ Z2
3. The matrix is

DΛ =

 z0 z0 z2

z1 ωz1 ωz0

z2 ω2z2 ω2z1


PΛ = z0z

2
1 + ωz2

0 z2 + ω2z1z
2
2 − z2

0 z2 − ω2z0z
2
1 − ωz1z

2
2

= (1− ω2)z0z
2
1 + (ω − 1)z2

0 z2 + (ω2 − ω)z1z
2
2

R. D. Malikiosis Full Spark Gabor Frames in Finite Dimensions



Definitions
The Main Problem

Applications
Outline of the proof

Let Λ = {(0, 0), (0, 2), (0, 3), (4, 1), (4, 5), (5, 0)} ⊆ Z2
6. The

columns are z ,M2z ,M3z ,MT 4z ,M5T 4z ,T 5z

DΛ =



z0 z0 z0

z1 ω2z1 ω3z1

z2 ω4z2 z2

z3 z3 ω3z3

z4 ω2z4 z4︸ ︷︷ ︸
D0

z5 ω4z5 ω3z5

z2 z2

ωz3 ω5z3

ω2z4 ω4z4

ω3z5 ω3z5

ω4z0 ω2z0

︸ ︷︷ ︸
D4

ω5z1 ωz1

z1

z2

z3

z4

z5

︸︷︷︸
D5

z0



Every diagonal gives the same monomial: here, it is z3
0 z1z2z5.
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Diagonal Union of Blocks (DUB)

Definition

Write DΛ = (D0|D1| · · · |DN−1), where the columns of Di have z0

in the ith row. If Di is a N × li matrix, then a DUB is a union of
square submatrices B0, . . . ,BN−1 containing a diagonal, such that
Bi is a li × li submatrix of Di .
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For σ = ι we have

cιZ
ι =

∣∣∣∣∣∣
z0 z0 z0

z1 ω2z1 ω3z1

z2 ω4z2 z2

∣∣∣∣∣∣ ·
∣∣∣∣ω3z5 ω3z5

ω4z0 ω2z0

∣∣∣∣ · |z0|,

so

cι =

∣∣∣∣∣∣
1 1 1
1 ω2 ω3

1 ω4 1

∣∣∣∣∣∣ ·
∣∣∣∣ω3 ω3

ω4 ω2

∣∣∣∣ · |1| 6= 0
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For σ = (254) we have

c(254)Z
(254) =

∣∣∣∣∣∣
z0 z0 z0

z1 ω2z1 ω3z1

z5 ω4z5 ω3z5

∣∣∣∣∣∣ ·
∣∣∣∣ω2z4 ω4z4

ω3z5 ω3z5

∣∣∣∣ · |z5|,

so

c(254) =

∣∣∣∣∣∣
1 1 1
1 ω2 ω3

1 ω4 ω3

∣∣∣∣∣∣ ·
∣∣∣∣ω2 ω4

ω3 ω3

∣∣∣∣ · |1| 6= 0
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If Zσ is obtained from a unique DUB, then its coefficient in
PΛ = det(DΛ) is a product of Fourier minors.
Lawrence, Pfander, and Walnut observed that there are always
monomials obtained uniquely.

Theorem (Chebotarev, 1926)

If N is prime, all minors of the N × N Fourier matrix are nonzero.

Theorem (LPW, 2005)

If N is prime, for almost all ϕ ∈ CN , the Gabor frame with window
ϕ has full spark.
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N composite? Focus on the consecutive index monomial (CI
monomial).

It is the monomial that is obtained from the DUB
containing the main diagonal, and is denoted simply by Z .

Fact

If the CI monomial is obtained uniquely, then its coefficient is a
product of Vandermonde determinants (up to phase), which are
nonzero.
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DΛ =



z0 z0 z0

z1 ω2z1 ω3z1

z2 ω4z2 z2

z3 z3 ω3z3

z4 ω2z4 z4︸ ︷︷ ︸
D0

z5 ω4z5 ω3z5

z2 z2

ωz3 ω5z3

ω2z4 ω4z4

ω3z5 ω3z5

ω4z0 ω2z0

︸ ︷︷ ︸
D4

ω5z1 ωz1

z1

z2

z3

z4

z5

︸︷︷︸
D5

z0



cι =

∣∣∣∣∣∣
1 1 1
1 ω2 ω3

1 ω4 1

∣∣∣∣∣∣ ·
∣∣∣∣ω3 ω3

ω4 ω2

∣∣∣∣ · |1| 6= 0
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σ = ι. Monomial: z3
0 z1z2z5.

03

1
1

2
1

3

45
1
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σ = (23). Monomial: z3
0 z1z3z4.

03

1
1

2

3 1

4
1

5
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σ = (14). Monomial: z2
0 z2z3z4z5.

02

1 2
1

3 1

4
1

5
1
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Associate Zσ to the random variable Xσ, as follows: if

Zσ = zα0
0 zα1

1 · · · z
αN−1

N−1

define
P[Xσ = i ] =

αi

N

Then, E [X 2
σ ] is minimized uniquely.
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Theorem

In any dimension, in every DΛ, the consecutive index monomial Z
is obtained uniquely.

The concentration of indices of the CI monomial around a certain
number is maximal.

Theorem (M, 2013)

For any N ∈ N, and for almost all ϕ ∈ CN , the Gabor frame with
window ϕ has full spark.
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Theorem

Let ξ be a transcendental number or an algebraic number whose
degree over Q(ω) is > N(N − 1)2. Then

(1, ξ, ξ4, . . . , ξ(N−1)2
)

generates a full spark Gabor frame.

Corollary

Let N ≥ 4 and ζ be any primitive root of unity, of order (N − 1)4.
Then

(1, ζ, ζ4, . . . , ζ(N−1)2
)

generates a full spark Gabor frame.
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Thank you!
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