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Original (complete) phase retrieval problem. Given a collection
of N vectors (aka a frame) v1, . . . , vN in RM or CM what
conditions on the vi ensure that every vector x can be recoverd (up
to a global phase factor) from the non-negative real vector
(|〈v1, x〉|, . . . , |〈vN , x〉|)?
This problem is equivalent to asking when the map

RM/±1→ RN
≥0, x 7→

(
|〈v1, x〉|2, . . . , |〈vN , x〉|2

)
or

CM/S1 → RN
≥0, x 7→

(
|〈v1, x〉|2, . . . , |〈vN , x〉2|

)
is injective?

In the real case there is a complete solution
Theorem R. (Balan, Casazza, Edidin ACHA2006) Phase retrieval
is possible with v1, . . . , vN if and only if for every subset
S ⊂ {1, . . . ,N} at least one of the collection of vectors {vi}i∈S or
{vj}j∈Sc spans (complement property).

The complement property condition implies that if N < 2d − 1
then no frame admits complete phase retrieval.



In the complex case things are a bit messier.

Theorem C (Conca, Edidin, Hering, Vinzat ACHA2015) If
N ≥ 4M − 4 then a generic collection of vectors v1, . . . , vN ∈ CM

admits phase retrieval. Moreover this bound is sharp if N = 2k + 1
for some integer k .

Remark. The 4M − 4 bound is not sharp. Cynthia Vinzant (2014)
has an example of an 11 element frame in C4 which admits phase
retrieval. Worse, we have no intrinsic characterization of the
complement of the generic set of “good” frames. In particular,
while any given complex frame of size 4M − 4 or larger admits
phase retrieval with probability 1, we have no way to test whether
this property holds. (In principal we do know one hypersurface
containing the locus of “bad” frames, but its degree is exponential
in M2.)



Generalization of the phase retrieval problem. Replace the
vectors vi by orthogonal projections.
Problem. Given a collection Φ = {P1, . . . ,PN}. of orthogonal
projections in RM (or CM), determine conditions on the Pi which
ensure that we recover all vectors x from the real numbers,
||P1x ||, . . . , ||PNx ||.

Remark. If the {v1, . . . , vN} is a collection of (non-zero) vectors
and PLi is the projection onto the line determined by vi then

|〈x , vi 〉| is the magnitude of the vector 〈x ,v〉v ,v v which is the formula
for projection of one vector onto another. So when the ranks of
the Pi are 1 this is the usual phase retrieval problem.

Remark. The question of phase retrieval for projections was first
raised (to my knowledge) in the paper Phase retrieval by
projections by Cahill, Casazza, Peterson, and Woodland
(arxiv:1305.6626).



Theorem. (CCPW13) For N = 2M − 1 there exist collections
P1, . . . ,PN of projections of any (non-zero) rank which admit
phase retrieval.

They also raise a number of interesting (to me anyway) questions
including

Problem 1. What is the minimal number of N such that there
exists a collection of projections P1, . . . ,PN which admits phase
retrieval. Does this number depend on the ranks?

Problem 2. The construction of the collection in the Theorem
above is very structured (you play games with orthonormal bases).
Does a random collection of 2M − 1 admit phase retrieval?



Using (Algebro) Geometric techniques I was able to answer
Problem 2 and say something about Problem 1.

Theorem 1. (Edidin 2015) Retrieval is possible if and only if for
every x ∈ RM , the vectors P1x , . . . ,PNx span.

Easy Corollary 1. If the Pi all have rank one and are determined
by vectors v1, . . . , vN , then phase retrieval is possible if and only
the collection {v1, . . . , vN} satisfies the complement property.

Easy Corollary 2. If at least M − 1 of the Pi have rank one then
at least M other projections are necessary for phase retrieval.
Likewise, if M − 2 of the projections have rank M − 1 then at least
M other projections are necessary.



Theorem 2. (Edidin 2015) If N ≥ 2M − 1 then a generic
collection of projections of any (non-zero) ranks admits phase
retrieval. Additionally, if M = 2k + 1 then no collection of 2M − 2
projections admits phase retrieval.

Remark. The second statement of the theorem was proved
independently by Zhiqiang Xu (arxiv 1505.07204) who also used
Vinzant’s technique to construct an example of 6 rank 2
projections in R4 which admit phase retrieval.

Remark. Theorem 2 answers Problem 2 of CCPW13.



Definition. A map f : X → Y of manifolds is a global immersion
if an only if for every point x ∈ X the linear map
dfx : Tx ,X → Tf (x),Y is injective.

Remark. If f is an immersion then it is locally in the source an
embedding, but it doesn’t need to be globally injective. Conversely,
an injective map need not be an immersion.

Example. The map f : R1 → R2, t 7→ (t2, t3 − t) is a global
immersion which is not an embedding, since the derivative never
vanishes but f (1) = f (−1) = (1, 0). On the other hand,
t 7→ (t2, t3) is injective but not a global immersion since the
derivative vanished when t = 0.



Proof of Theorem 1.
Observation. If A = {P1, . . . ,PN} is a collection of projections
then A admits phase retrieval if and only if the quadratic map

ΦA : RM/±1→ RN
≥0, x 7→

(
||P1x ||2, . . . , ||PNx ||2

)
is injective.

Lemma. Let P : RM → RM be a rank k projection and let
f : RM → R be defined by x 7→ 〈Px ,Px〉. For any x ∈ RM ,
dfx(y) = 2〈Px , y〉 where we identify TxRM = RM and
Tf (x)R = R.

Proof. Since P is a projection there is an orthonormal basis of
eigenvectors for P. With respect to this basis
P = diag(1, . . . 1, 0, . . . , 0). If we choose coordinates determined
by this basis then f (x1, . . . , xM) = x2

1 + x2
2 + . . . x2

k , so
∂f /∂xi = 2xi if i ≤ k and ∂f /∂xi = 0 if i > k . Thus the
derivative at a point x = (a1, . . . , aM) ∈ RM is the linear operator
that maps y = (b1, . . . , bM) to 2

∑k
i=1 aibi = 2〈Px , y〉



Proof of Theorem 1 continued...
Proposition 1. The map AΦ is an immersion at
x ∈

(
RM r {0}

)
/± 1 if and only if P1x , . . . ,PNx span an

M-dimensional subspace of RM where x is either lift of x to
RN r {0}.

Proof. Consider the map BΦ : RM r {0} → RN ,
x 7→ (〈P1x ,P1x〉, . . . , 〈PNx ,PNx〉). The map BΦ is the
composition of AΦ with the double cover
RM r {0} →

(
RM r {0}

)
/± 1. Since the derivative of a covering

map is an isomorphism, it suffices to prove the proposition for the
map BΦ. Applying our Lemma to each component of BΦ we see
that dBΦ is the linear transformation
y 7→ 2(〈P1x , y〉, . . . , 〈PNx , y〉). Hence (dBΦ)x and thus (dAΦ)x is
injective if and only if there is no non-zero vector y which is
orthogonal to each Pix , or equivalently the vectors Pix span all of
RM .



Conclusion of the proof of Theorem 1.
Proposition 2. The map AΦ is injective if and only if it is a global
immersion.

Proof. First assume that AΦ is not an immersion. By Proposition
1 there exists an x 6= 0 such that P1x , . . . ,PNx fail to span RM .
Let y be a non-zero vector orthogonal to all the Pix and consider
the vectors x ′ = x + y and y ′ = x − y . Then

|Pix
′||2 = 〈Pix

′, x ′〉 since Pi is an orthogonal projection
= 〈Pix , x〉+ 〈Piy , y〉+ 〈Piy , x〉+ 〈Pix , y〉
= ||Pix ||2 + ||Piy ||2

where the last equality holds because

〈Piy , x〉 = 〈Piy ,Pix〉 = 〈Pix ,Piy〉 = 〈Pix , y〉 = 0.

Likewise ||Piy
′||2 = ||Pix ||2 + ||Piy ||2. Hence, either AΦ is not

injective or x ′ = ±y ′. However, if x ′ = ±y ′ then either x = 0 or
y = 0 which is not the case. Thus AΦ is not injective.



Proof of Proposition 2 continued.
Conversely, suppose that AΦ is an immersion and suppose that
there exist x and y such that ||Pix || = ||Piy || for all i . We wish to
show that x = ±y . Suppose that x 6= y . Then x − y 6= 0.
Thus the linear transformation

(dAΦ)x−y : RM → RN , z 7→ (〈Pi (x − y), z〉)Mi=1

is injective.
On the other hand

〈Pi (x − y), x + y〉 = 〈Pix , x〉 − 〈Piy , y〉 = ||Pix ||2 − ||Piy ||2 = 0.

(Here we again use the fact that Pi is an orthogonal projection so
〈Pix , x〉 = 〈Pix ,Pix〉). Hence x + y = 0, ie x = −y .



The case of few measurments.

By Theorem 1 the map AΦ is not injective if and only there is a
pair (x , y) ∈ PM−1

R × PM−1
R such that y tPix = 0 for all i .

Observation. The equation y tPix = 0 is bihomegenous of degree
1 in x and y , so we can consider the subvariety Z ⊂ PM−1 × PM−1

defined by the vanishing of the 2M − 2 bilinear forms
{yTPix}2M−2

i=1 . Complete phase retrieval is impossible if and only if
this variety has a real point .

Problem. Are there bounds L which only depend on the M and
the ranks of the Pi which guarantee that Z has a real point when
N < L?



Example. (another proof of the BCE06 Theorem) If P has rank
one then the quadratic equation yTPx = 0 factors a product of
two linear forms. Thus, when all Pi have rank one solving the
system {yTPix = 0}Ni=1 is equivalent to solving any one of 2N

linear systems. If N < 2M − 1 at least one of these systems has a
solutions, so the variety Z has lots of real points.

Example (sketch of the proof the 2nd statement in Theorem 2). If
N = 2M − 2 then we expect the variety Z to have complex
dimension 0. The intersection cycle in PM−1×PM−1 determined by
Z has degree

(2M−2
M−1

)
. If N = 2k + 1 then this binomial is divisible

by 2 but not 4. On the other hand the involution (x , y) 7→ (y , x)
acts on Z and hence on this cycle. Since we can easily show that
Z contains no points of the diagonal we can conclude that the
intersection cycle contains a real point. (If not, then our cycle
would have to have degree divisible by 4 since the complex
conjugation involution also acts freely on the intersection cycle.)
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