Frames in finite-dimensional spaces

Ole Christensen

Department of Applied Mathematics and Computer Science Harmonic Analysis - Theory and Applications (HATA DTU) Technical University of Denmark ochr@dtu.dk

July 27, 2015

July 27, 2015 1 / 47

A B > A B

- An Introduction to frames and Riesz bases, Birkhäuser 2002.
- Second expanded edition (720 pages), Spring 2016

- Chapter 1: Frames in finite-dimensional spaces.
- If you want a pdf-file with Chapter 1 contact me at ochr@dtu.dk

Plan for the talk

- Frames in finite-dimensional versus infinite-dimensional spaces;
- (Explicit constructions of tight frames in \mathbb{C}^n with desirable properties) (Talks by Fickus, Mixon, Strawn)
- Tight frames versus dual pairs of frames in \mathbb{C}^n ;
- Gabor frames in $L^2(\mathbb{R})$ and dual pairs;
- From Gabor frames in L²(R) to Gabor frames in Cⁿ through sampling and periodization.
 (Talk by Malikiosis)
- 6 open problems along the way.

Key purpose of frame theory

Let V denote a vector space.

Want: Expansions

$$f=\sum c_k f_k$$

of signals $f \in V$ in terms of convenient building blocks f_k .

Desirable properties could be:

- Easy to calculate the coefficients c_k ;
- Only few large coefficients c_k for the relevant signals f;
- Stability against noise or removal of elements.

The vector space can be

- A finite-dimensional vector space with inner product, typically \mathbb{R}^n or \mathbb{C}^n ;
- An infinite-dimensional Hilbert space; either an abstract space, or a concrete space, typically L²(ℝ), ℓ²(ℤ), or L²(0, L).
- A Banach space or a topological space (L^p(ℝ), Besov spaces, modulation spaces, Fréchet spaces)

(DTU)

Four classical tracks in frame theory

- Finite frames;
- Frame theory in separable Hilbert spaces;
- Gabor frames in $L^2(\mathbb{R})$;
- Wavelet frames in $L^2(\mathbb{R})$;
- (Geometric analysis: curvelets, shearlets,.....)
- (Frames in Banach spaces, abstract generalizations, Hilbert *C*^{*} modules,....).

To a large extent the 4 topics are developed independently of each other - but more coordination would be useful!

イロト イポト イヨト イヨト

Frames - a generalization of orthonormal bases

Definition:

Let \mathcal{H} denote a Hilbert space. A family of vectors $\{f_k\}_{k \in I}$ is a frame for \mathcal{H} if there exist constants A, B > 0 such that

$$A||f||^2 \leq \sum_{k \in I} |\langle f, f_k \rangle|^2 \leq B||f||^2, \, \forall f \in \mathcal{H}.$$

The numbers A, B are called frame bounds.

The frame is tight if we can choose

$$A = B$$
.

Note that

- (i) If \mathcal{H} is an infinite-dimensional Hilbert space, the index *I* must be infinite;
- (ii) If \mathcal{H} is finite-dimensional, the index set *I* can still be infinite (although in general not very natural)

(DTU)

July 27, 2015 6 / 47

General frame theory

Theorem Let $\{f_k\}_{k \in I}$ be a frame for \mathcal{H} . Then the following hold: (i) The operator

$$S: \mathcal{H} \to \mathcal{H}, Sf := \sum_{k \in I} \langle f, f_k \rangle f_k$$

as well-defined, bounded, self-adjoint, and invertible; Each $f \in \mathcal{U}$ has the expansion

(ii) Each $f \in \mathcal{H}$ has the expansion

$$f = \sum_{k \in I} \langle f, S^{-1}f_k \rangle f_k$$
 Tight case: $f = \frac{1}{A} \sum_{k \in I} \langle f, f_k \rangle f_k$

(iii) If $\{f_k\}_{k \in I}$ is a frame but not a basis, there exists families $\{g_k\}_{k \in I} \neq \{S^{-1}f_k\}_{k \in I}$ such that

$$f = \sum_{k \in I} \langle f, g_k \rangle f_k, \, \forall f \in \mathcal{H}.$$

Any such $\{g_k\}_{k=1}^{\infty}$ is called a dual frame.

(DTU)

イロト イポト イヨト イヨト

Frames in finite-dimensional spaces

A frame for \mathbb{C}^n is a collection of vectors $\{f_k\}_{k=1}^m$ in \mathbb{C}^n such that there exists constants A, B > 0 with the property

$$A||f||^2 \leq \sum_{k=1}^m |\langle f, f_k \rangle|^2 \leq B||f||^2, \, \forall f \in \mathbb{C}^n.$$

Proposition A family of vectors $\{f_k\}_{k=1}^m$ in \mathbb{C}^n is a frame if and only if

$$\operatorname{span}\{f_k\}_{k=1}^m = \mathbb{C}^n.$$

Corollary If $\{f_k\}_{k=1}^m$ in \mathbb{C}^n is a frame for \mathbb{C}^n , then $m \ge n$.

Frame theory in \mathbb{C}^n is really "just" linear algebra!

・ロト ・四ト ・ヨト ・ヨト

Frames in finite-dimensional spaces

There are (at least) two tracks in frame theory in finite-dimensional spaces:

- (i) Explicit construction of frames with desired properties;
- (ii) Analysis of the interplay between frames in finite-dimensional spaces and in infinite-dimensional spaces.

The focus in this talk will be on (ii).

Classical results from linear algebra in \mathbb{C}^n

Every set of linearly independent vectors {*f_k*}^{*m*}_{*k*=1} in ℂ^{*n*} can be extended to a basis; i.e., there exist vectors {*g_k*}^{*l*}_{*k*=1} such that

$${f_k}_{k=1}^m \cup {g_k}_{k=1}^\ell$$

is a basis for \mathbb{C}^n ;

Every family {*f_k*}^m_{k=1} of vectors such that span{*f_k*}^m_{k=1} = ℂⁿ, contains a basis; that is, there exists an index set *I* such that {*f_k*}_{k∈{1,...,m}\I} is a basis for ℂⁿ.

Frames in finite-dimensional spaces

Frame formulation:

Proposition:

(i) Every finite set of vectors $\{f_k\}_{k=1}^m$ in \mathbb{C}^n can be extended to a (tight) frame; i.e., there exist vectors $\{g_k\}_{k=1}^{\ell}$ such that

$${f_k}_{k=1}^m \cup {g_k}_{k=1}^\ell$$

is a (tight) frame for \mathbb{C}^n ;

(ii) Every frame $\{f_k\}_{k=1}^m$ for \mathbb{C}^n contains a basis; that is, there exists an index set *I* such that $\{f_k\}_{k \in \{1,...,m\} \setminus I}$ is a basis for \mathbb{C}^n .

Frame theory in infinite-dimensional spaces is different:

Let \mathcal{H} denote an infinite-dimensional separable Hilbert space.

Theorem (Li/Sun, Casazza/Leonhard, 2008) Every finite set of vectors in \mathcal{H} can be extended to a tight frame.

Frame theory in infinite-dimensional spaces is different:

Let \mathcal{H} denote an infinite-dimensional separable Hilbert space.

Theorem (Li/Sun, Casazza/Leonhard, 2008) Every finite set of vectors in \mathcal{H} can be extended to a tight frame.

Theorem (Casazza, C., 1995) There exist frames $\{f_k\}_{k=1}^{\infty}$, for which no subfamily $\{f_k\}_{k\in\mathbb{N}\setminus I}$ is a basis for \mathcal{H} .

Example Let $\{e_k\}_{k=1}^{\infty}$ denote an ONB for \mathcal{H} . Then the sequence

$$\{f_k\}_{k=1}^{\infty} := \left\{ e_1, \frac{1}{\sqrt{2}}e_2, \frac{1}{\sqrt{2}}e_2, \frac{1}{\sqrt{3}}e_3, \frac{1}{\sqrt{3}}e_3, \frac{1}{\sqrt{3}}e_3, \cdots \right\}$$

is a tight frame; but no subfamily is a Riesz basis.

(DTU)

Frame theory in infinite-dimensional spaces is different:

A much more complicated result:

Proposition (Casazza, C., 1995) There exist tight frames $\{f_k\}_{k=1}^{\infty}$ with $||f_k|| = 1, \forall k \in \mathbb{N}$, for which no subfamily $\{f_k\}_{k \in \mathbb{N} \setminus I}$ is a basis for \mathcal{H} .

A sequence with a strange behavior

Example (C., 2001) Let $\{e_k\}_{k=1}^{\infty}$ denote an ONB for \mathcal{H} and define $\{f_k\}_{k=1}^{\infty}$ by $f_k := e_k + e_{k+1}, \ k \in \mathbb{N}.$

Then

- (i) span{f_k}[∞]_{k=1} = H;
 (ii) {f_k}[∞]_{k=1} is a Bessel sequence, but not a frame;
- (iii) There exists $f \in \mathcal{H}$ such that

$$f \neq \sum_{k=1}^{\infty} c_k f_k$$

for any choice of the coefficients c_k .

(iv) ${f_k}_{k=1}^{\infty}$ is minimal and its unique biorthogonal sequence ${g_k}_{k=1}^{\infty}$ is given by

$$g_k = (-1)^k \sum_{j=1}^k (-1)^j e_j, \ k \in \mathbb{N}.$$

A classical ONB for \mathbb{C}^n

Given $n \in \mathbb{N}$, let $\omega := e^{2\pi i/n}$ and consider the $n \times n$ discrete Fourier transform matrix (DFT) given by

$$\frac{1}{\sqrt{n}} \begin{pmatrix} 1 & 1 & 1 & \cdot & \cdot & 1 \\ 1 & \omega & \omega^2 & \cdot & \cdot & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdot & \cdot & \omega^{2(n-1)} \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdot & \cdot & \omega^{(n-1)(n-1)} \end{pmatrix}$$

▶ < ≣ ▶ ≣ ৩৭৫ July 27, 2015 15/47

.

イロト イポト イヨト イヨト

A classical ONB for \mathbb{C}^n

Given $n \in \mathbb{N}$, consider the *n* vectors e_k , k = 1, ..., n in \mathbb{C}^n , given by

$$e_{k} = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 \\ e^{2\pi i \frac{k-1}{n}} \\ e^{4\pi i \frac{k-1}{n}} \\ \vdots \\ e^{2\pi i (n-1)\frac{k-1}{n}} \end{pmatrix}, \ k = 1, \dots n.$$

Note that e_k is the *k*th column in the Fourier transform matrix (DFT).

Lemma: The vectors $\{e_k\}_{k=1}^n$ constitute an orthonormal basis for \mathbb{C}^n .

イロト イポト イヨト イヨト

Tight frames in \mathbb{C}^n - the first construction

Construction by Zimmermann (2001), motivated by question by Feichtinger:

Theorem: Let m > n and define the vectors $\{f_k\}_{k=1}^m$ in \mathbb{C}^n by

$$f_{k} = \frac{1}{\sqrt{m}} \begin{pmatrix} 1 \\ e^{2\pi i \frac{k-1}{m}} \\ \vdots \\ e^{2\pi i (n-1)\frac{k-1}{m}} \end{pmatrix}, \quad k = 1, 2, \dots, m.$$

Then $\{f_k\}_{k=1}^m$ is a tight overcomplete frame for \mathbb{C}^n with frame bound equal to one, and $||f_k|| = \sqrt{\frac{n}{m}}$ for all *k*.

Note that the vectors f_k consist of the first *n* coordinates of the Fourier ONB for \mathbb{C}^m . The frame $\{f_k\}_{k=1}^m$ in \mathbb{C}^n is called a harmonic frame.

(DTU)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへつ

Directions in frame theory in \mathbb{C}^n

- The result by Zimmermann can be seen as the starting point for the explosion in explicit construction of tight frames.
- Benedetto & Fickus (2003): Characterization of finite normalized tight frames using the frame potential.
- Casazza: papers with Leon (2006) & Leonhard (2008) on finite equal-norm frames.
- Casazza, Kovačević (2003): Equal-norm tight frames, erasures
- Benedetto, Powell, Yilmaz: Sigma-Delta quantization (2006), followed by a series of papers by Blum, Lammers, Powell, Yilmaz
- Strohmer (2003/2008): equiangular tight frames.
- Bodmann, Casazza, Kutyniok (2011): a quantitative notion for redundancy for finite frames.

• Possibility to control the condition number for the frame operator, i.e., the ration between the optimal upper frame bound and the optimal lower frame bound;

• Possibility to control the condition number for the frame operator, i.e., the ration between the optimal upper frame bound and the optimal lower frame bound; this is satisfied for tight frames, e.g., the harmonic frames.

- Possibility to control the condition number for the frame operator, i.e., the ration between the optimal upper frame bound and the optimal lower frame bound; this is satisfied for tight frames, e.g., the harmonic frames.
- Maximal stability against erasures (full spark);

- Possibility to control the condition number for the frame operator, i.e., the ration between the optimal upper frame bound and the optimal lower frame bound; this is satisfied for tight frames, e.g., the harmonic frames.
- Maximal stability against erasures (full spark); this is satisfied for the harmonic frames. See the paper by Alexeev, Cahill & Mixon for more general harmonic frames, arising by selecting other rows from the DFT matrix.

- Possibility to control the condition number for the frame operator, i.e., the ration between the optimal upper frame bound and the optimal lower frame bound; this is satisfied for tight frames, e.g., the harmonic frames.
- Maximal stability against erasures (full spark); this is satisfied for the harmonic frames. See the paper by Alexeev, Cahill & Mixon for more general harmonic frames, arising by selecting other rows from the DFT matrix.
- "Equi-distribution," e.g., in the sense that the angle between two different elements in the frame is constant (equiangular frames);

- Possibility to control the condition number for the frame operator, i.e., the ration between the optimal upper frame bound and the optimal lower frame bound; this is satisfied for tight frames, e.g., the harmonic frames.
- Maximal stability against erasures (full spark); this is satisfied for the harmonic frames. See the paper by Alexeev, Cahill & Mixon for more general harmonic frames, arising by selecting other rows from the DFT matrix.
- "Equi-distribution," e.g., in the sense that the angle between two different elements in the frame is constant (equiangular frames); this is satisfied for some of the harmonic frames.
- Equal norm of the frame elements;

イロト イポト イヨト イヨト

- Possibility to control the condition number for the frame operator, i.e., the ration between the optimal upper frame bound and the optimal lower frame bound; this is satisfied for tight frames, e.g., the harmonic frames.
- Maximal stability against erasures (full spark); this is satisfied for the harmonic frames. See the paper by Alexeev, Cahill & Mixon for more general harmonic frames, arising by selecting other rows from the DFT matrix.
- "Equi-distribution," e.g., in the sense that the angle between two different elements in the frame is constant (equiangular frames); this is satisfied for some of the harmonic frames.
- Equal norm of the frame elements; this is satisfied for the harmonic frames.

The issue of the length of the frame vectors is sometimes tricky!

イロト イポト イヨト イヨト 一日

Open problem posed by Thomas Strohmer, SAMPTA 2015

Let $\{f_k\}_{k=1}^m$ be a frame for \mathbb{C}^n , for which we only know the direction of the vectors f_k but not the norms $||f_k||$. Assume that we for an unknown vector $f \in \mathbb{C}^n$ know the inner products

$$\langle f, f_k \rangle, \ k = 1, \ldots, m.$$

How - and under which conditions - can we recover f?

Open problem posed by Thomas Strohmer, SAMPTA 2015

Let $\{f_k\}_{k=1}^m$ be a frame for \mathbb{C}^n , for which we only know the direction of the vectors f_k but not the norms $||f_k||$. Assume that we for an unknown vector $f \in \mathbb{C}^n$ know the inner products

$$\langle f, f_k \rangle, \ k = 1, \ldots, m.$$

How - and under which conditions - can we recover f?

 The question is well-posed: since a frame is complete, knowledge of the numbers in (f, fk) determines the vector f uniquely.

Open problem posed by Thomas Strohmer, SAMPTA 2015

Let $\{f_k\}_{k=1}^m$ be a frame for \mathbb{C}^n , for which we only know the direction of the vectors f_k but not the norms $||f_k||$. Assume that we for an unknown vector $f \in \mathbb{C}^n$ know the inner products

$$\langle f, f_k \rangle, \ k = 1, \ldots, m.$$

How - and under which conditions - can we recover f?

- The question is well-posed: since a frame is complete, knowledge of the numbers in (f, fk) determines the vector f uniquely.
- If we actually know the norms $||f_k||$, we know the frame completely, and knowledge of the numbers $\langle f, f_k \rangle$ allow us to compute the frame operator

$$Sf = \sum_{k=1}^{m} \langle f, f_k \rangle f_k$$

and apply the frame decomposition

$$f = \sum_{\text{Talk, Bremen, 2015}}^{m} \langle f, f_k \rangle S^{-1} f_k$$

(DTU)

Equiangular frames

If the elements in $\{f_k\}_{k=1}^m$ have the same length, the condition of being equiangular amounts to the existence of a constant *C* such that

$$|\langle f_k, f_j \rangle| = C, \forall k \neq j.$$

In particular, any orthonormal basis $\{e_k\}_{k=1}^n$ for \mathbb{C}^n is equiangular. Theorem (Strohmer & Heath, 2003) Consider a unit-norm frame $\{f_k\}_{k=1}^m$ for either \mathbb{C}^n or \mathbb{R}^n ; then

$$\max_{k\neq j} |\langle f_k, f_j \rangle| \ge \sqrt{\frac{m-n}{n(m-1)}}.$$

Equality holds if and only if $\{f_k\}_{k=1}^m$ is an equiangular tight frame.

- (i) In the case of \mathbb{C}^n , equality can only occur if $m \le n(n+1)/2$;
- (ii) In the case of \mathbb{R}^n , equality can only occur if $m \le n^2$.

イロト 不得 トイヨト イヨト 二日

Equiangular frames

- The understanding of equiangular tight frames is far from complete;
- The paper by Strohmer & Heath contains examples of equiangular tight frames, e.g., certain versions of the harmonic frames where the columns are generated by different roots of unity.
- More examples of equiangular tight frame and no-go theorems in the papers by Sustik et al., Xia et al., and Strohmer.

Characterization of all dual frames

Result by Shidong Li, 1991:

Theorem: Let $\{f_k\}_{k=1}^{\infty}$ be a frame for a Hilbert space \mathcal{H} . The dual frames of $\{f_k\}_{k=1}^{\infty}$ are precisely the families

$$\{g_k\}_{k=1}^{\infty} = \left\{ S^{-1}f_k + h_k - \sum_{j=1}^{\infty} \langle S^{-1}f_k, f_j \rangle h_j \right\}_{k=1}^{\infty},$$

where $\{h_k\}_{k=1}^{\infty}$ is a Bessel sequence in \mathcal{H} .

Characterization of all dual frames

Result by Shidong Li, 1991:

Theorem: Let $\{f_k\}_{k=1}^{\infty}$ be a frame for a Hilbert space \mathcal{H} . The dual frames of $\{f_k\}_{k=1}^{\infty}$ are precisely the families

$$\{g_k\}_{k=1}^{\infty} = \left\{ S^{-1}f_k + h_k - \sum_{j=1}^{\infty} \langle S^{-1}f_k, f_j \rangle h_j \right\}_{k=1}^{\infty},$$

where $\{h_k\}_{k=1}^{\infty}$ is a Bessel sequence in \mathcal{H} . Allows us to *optimize* the duals:

- Which dual has the best approximation theoretic properties?
- Which dual has the smallest support?
- Which dual has the most convenient expression?
- Can we find a dual that is easy to calculate?

Characterization of all dual frames

Result by Shidong Li, 1991:

Theorem: Let $\{f_k\}_{k=1}^{\infty}$ be a frame for a Hilbert space \mathcal{H} . The dual frames of $\{f_k\}_{k=1}^{\infty}$ are precisely the families

$$\{g_k\}_{k=1}^{\infty} = \left\{ S^{-1}f_k + h_k - \sum_{j=1}^{\infty} \langle S^{-1}f_k, f_j \rangle h_j \right\}_{k=1}^{\infty},$$

where $\{h_k\}_{k=1}^{\infty}$ is a Bessel sequence in \mathcal{H} . Allows us to *optimize* the duals:

- Which dual has the best approximation theoretic properties?
- Which dual has the smallest support?
- Which dual has the most convenient expression?
- Can we find a dual that is easy to calculate?
- Why consider dual frame pairs instead of just tight frames?

An example: Sigma-Delta quantization

Work by Lammers, Powell, and Yilmaz (2009): Consider a frame $\{f_k\}_{k=1}^m$ for \mathbb{R}^n . Letting $\{g_k\}_{k=1}^m$ denote a dual frame, each $f \in \mathbb{R}^n$ can be written

$$f = \sum_{k=1}^{m} \langle f, g_k \rangle f_k.$$

An example: Sigma-Delta quantization

Work by Lammers, Powell, and Yilmaz (2009): Consider a frame $\{f_k\}_{k=1}^m$ for \mathbb{R}^n . Letting $\{g_k\}_{k=1}^m$ denote a dual frame, each $f \in \mathbb{R}^n$ can be written

$$f = \sum_{k=1}^m \langle f, g_k \rangle f_k.$$

In practice: the coefficients $\langle f, g_k \rangle$ must be quantized, i.e., replaced by some coefficients d_k from a discrete set such that

$$d_k \approx \langle f, g_k \rangle,$$

which leads to

$$f\approx\sum_{k=1}^m d_kf_k.$$

Note: increased redundancy (large *m*) increases the chance of a good approximation.

(DTU)

July 27, 2015 24 / 47
An example: Sigma-Delta quantization

For each *r* ∈ N there is a procedure (*r*th order sigma-delta quantization) to find appropriate coefficients *d_k*.

< □ > < A

.

An example: Sigma-Delta quantization

- For each *r* ∈ N there is a procedure (*r*th order sigma-delta quantization) to find appropriate coefficients *d_k*.
- *r*the order sigma-delta quantization with the canonical dual frame does not provide approximation order m^{-r} , even for tight frames.
- Approximation order m^{-r} can be obtained using other dual frames, the so-called *r*th order Sobolev duals.

• For some years: focus on construction of tight frames.

- For some years: focus on construction of tight frames.
- Do not forget the extra flexibility offered by convenient dual frame pairs!

- For some years: focus on construction of tight frames.
- Do not forget the extra flexibility offered by convenient dual frame pairs!

Theorem: For each Bessel sequence $\{f_k\}_{k=1}^{\infty}$ in a Hilbert space \mathcal{H} , there exists a family of vectors $\{p_j\}_{i \in J}$ such that

$${f_k}_{k=1}^{\infty} \cup {p_j}_{i\in J}$$

is a tight frame for \mathcal{H} .

Similarly:

Theorem (C., Kim & Kim, 2011) Let $\{f_i\}_{i \in I}$ and $\{g_i\}_{i \in I}$ be Bessel sequences in \mathcal{H} . Then there exist Bessel sequences $\{p_j\}_{i \in J}$ and $\{q_j\}_{i \in J}$ in \mathcal{H} such that $\{f_i\}_{i \in I} \cup \{p_j\}_{i \in J}$ and $\{g_i\}_{i \in I} \cup \{q_j\}_{i \in J}$ form a pair of dual frames for \mathcal{H} .

• • • • • • • • • • • • •

Example Let $\{e_j\}_{j=1}^{10}$ be an orthonormal basis for \mathbb{C}^{10} and consider the frame

$${f_j}_{j=1}^{10} := {2e_1} \cup {e_j}_{j=2}^{10}.$$

There exist 9 vectors $\{h_j\}_{j=1}^9$ such that

$${f_j}_{j=1}^{10} \cup {h_j}_{j=1}^9$$

is a tight frame for \mathbb{C}^{10} - and 9 is the minimal number to add.

A pair of dual frames can be obtained by adding just one element:

$$\{f_j\}_{j=1}^{10} \cup \{-3e_1\}$$
 and $\{f_j\}_{j=1}^{10} \cup \{e_1\}$

form dual frames in \mathbb{C}^{10} .

イロト イタト イヨト イヨト 二日

Theorem (Casazza and Fickus): Given a sequence of positive numbers $a_1 \ge a_2 \ge \cdots \ge a_m$, there exists a tight frame $\{f_j\}_{j=1}^m$ for \mathbb{R}^n with $||f_j|| = a_j, j = 1, \dots, m$, if and only if

$$a_1^2 \le \frac{1}{n} \sum_{j=1}^n a_j^2.$$
 (1)

Theorem (Casazza and Fickus): Given a sequence of positive numbers $a_1 \ge a_2 \ge \cdots \ge a_m$, there exists a tight frame $\{f_j\}_{j=1}^m$ for \mathbb{R}^n with $||f_j|| = a_j, j = 1, \dots, m$, if and only if

$$a_1^2 \le \frac{1}{n} \sum_{j=1}^n a_j^2.$$
 (1)

Theorem (C., Powell, Xiao, 2010): Given any sequence $\{\alpha_j\}_{j=1}^m$ of real numbers, and assume that m > n. Then the following are equivalent:

(i) There exist a pair of dual frames {f_j}^m_{j=1} and {f̃_j}^m_{j=1} for ℝⁿ such that α_j = ⟨f_j, f̃_j⟩ for all j = 1,..., m.
(ii) n = Σ^m_{j=1} α_j.

Gabor frames - from $L^2(\mathbb{R})$ to \mathbb{C}^L

• For $a \in \mathbb{R}$, define the translation operator

$$T_a: L^2(\mathbb{R}) \to L^2(\mathbb{R}), T_a f(x) = f(x-a).$$

• For $b \in \mathbb{R}$, define the modulation operator

$$E_b: L^2(\mathbb{R}) \to L^2(\mathbb{R}), E_b f(x) = e^{2\pi i b x} f(x).$$

• A frame for $L^2(\mathbb{R})$ of the form

$$\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}=\{e^{2\pi imbx}g(x-na)\}_{m,n\in\mathbb{Z}}$$

is called a Gabor frame.

.

The duals of a Gabor frame for $L^2(\mathbb{R})$

For a Gabor frame $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$ with associated frame operator *S*, the frame decomposition shows that

$$f = \sum_{m,n\in\mathbb{Z}} \langle f, S^{-1}E_{mb}T_{na}g \rangle E_{mb}T_{na}g \qquad [S \text{ commutes with } E_{mb}T_{na}]$$
$$= \sum_{m,n\in\mathbb{Z}} \langle f, E_{mb}T_{na}S^{-1}g \rangle E_{mb}T_{na}g, \quad \forall f \in L^{2}(\mathbb{R}).$$

Note that the canonical dual of a Gabor frame is again a Gabor frame.

• • • • • • • • • • • •

The duals of a Gabor frame for $L^2(\mathbb{R})$

For a Gabor frame $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$ with associated frame operator *S*, the frame decomposition shows that

$$f = \sum_{m,n\in\mathbb{Z}} \langle f, S^{-1}E_{mb}T_{na}g \rangle E_{mb}T_{na}g \qquad [S \text{ commutes with } E_{mb}T_{na}]$$
$$= \sum_{m,n\in\mathbb{Z}} \langle f, E_{mb}T_{na}S^{-1}g \rangle E_{mb}T_{na}g, \quad \forall f \in L^{2}(\mathbb{R}).$$

Note that the canonical dual of a Gabor frame is again a Gabor frame. But - how can we control the properties of $S^{-1}g$?

The duals of a Gabor frame for $L^2(\mathbb{R})$

For a Gabor frame $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$ with associated frame operator *S*, the frame decomposition shows that

$$f = \sum_{m,n\in\mathbb{Z}} \langle f, S^{-1}E_{mb}T_{na}g \rangle E_{mb}T_{na}g \qquad [S \text{ commutes with } E_{mb}T_{na}]$$
$$= \sum_{m,n\in\mathbb{Z}} \langle f, E_{mb}T_{na}S^{-1}g \rangle E_{mb}T_{na}g, \quad \forall f \in L^{2}(\mathbb{R}).$$

Note that the canonical dual of a Gabor frame is again a Gabor frame.

But - how can we control the properties of $S^{-1}g$? Suggestion: Don't construct a nice frame and *expect* the canonical dual to be nice.

The duals of a Gabor frame $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ for $L^2(\mathbb{R})$

Construct simultaneously dual pairs $\{E_{mb}T_{na}g\}, \{E_{mb}T_{na}h\}$ such that *g* and *h* have the required properties, and

$$f = \sum_{m,n \in \mathbb{Z}} \langle f, E_{mb}T_{na}h \rangle E_{mb}T_{na}g, \ \forall f \in L^2(\mathbb{R}).$$

The duals of a Gabor frame $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ for $L^2(\mathbb{R})$

Construct simultaneously dual pairs $\{E_{mb}T_{na}g\}, \{E_{mb}T_{na}h\}$ such that *g* and *h* have the required properties, and

$$f = \sum_{m,n \in \mathbb{Z}} \langle f, E_{mb} T_{na} h \rangle E_{mb} T_{na} g, \ \forall f \in L^2(\mathbb{R}).$$

Ron & Shen, A.J.E.M. Janssen (1998):

Theorem: Two Bessel sequences $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$ and $\{E_{mb}T_{nah}\}_{m,n\in\mathbb{Z}}$ form dual frames if and only if

(i)
$$\sum_{k \in \mathbb{Z}} \overline{g(x - ka)} h(x - ka) = b$$
, *a.e.* $x \in [0, a]$.
(ii) $\sum_{k \in \mathbb{Z}} \overline{g(x - ka - n/b)} h(x - ka) = 0$, *a.e.* $x \in [0, a]$, $n \in \mathbb{Z} \setminus \{0\}$.

Explicit construction of dual pairs of Gabor frames in $L^2(\mathbb{R})$

In order for a frame $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$ to be useful, we need a dual frame $\{E_{mb}T_{na}h\}$, i.e., we must find $h \in L^2(\mathbb{R})$ such that

$$f = \sum_{m,n \in \mathbb{Z}} \langle f, E_{mb} T_{na} h \rangle E_{mb} T_{na} g, \ \forall f \in L^2(\mathbb{R}).$$

Ansatz/suggestion: Given a window function $g \in L^2(\mathbb{R})$ generating a frame $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$, look for a dual window of the form

$$h(x) = \sum_{k=-K}^{K} c_k g(x+k).$$

The structure of h makes it easy to derive properties of h based on properties of g (regularity, size of support, membership un various vector spaces,....)

• • • • • • • • • • • •

Explicit construction of dual pairs of Gabor frames

Theorem:(C., 2006; C. & R. Y. Kim, 2007) Let $N \in \mathbb{N}$. Let $g \in L^2(\mathbb{R})$ be a real-valued bounded function for which

• supp
$$g \subseteq [0, N]$$
,
• $\sum_{n \in \mathbb{Z}} g(x - n) = 1$.
Let $b \in]0, \frac{1}{2N-1}]$. Define $h \in L^2(\mathbb{R})$ by
 $h(x) = \sum_{n=-N+1}^{N-1} a_n g(x + n)$.

where

$$a_0 = b$$
, $a_n + a_{-n} = 2b$, $n = 1, 2, \cdots, N - 1$.

Then g and h generate dual frames $\{E_{mb}T_ng\}_{m,n\in\mathbb{Z}}$ and $\{E_{mb}T_nh\}_{m,n\in\mathbb{Z}}$.

• • • • • • • • • • • •

Explicit construction of dual pairs of Gabor frames

Theorem:(C., 2006; C. & R. Y. Kim, 2007) Let $N \in \mathbb{N}$. Let $g \in L^2(\mathbb{R})$ be a real-valued bounded function for which

• supp
$$g \subseteq [0, N]$$
,
• $\sum_{n \in \mathbb{Z}} g(x - n) = 1$.
Let $b \in]0, \frac{1}{2N-1}]$. Define $h \in L^2(\mathbb{R})$ by
 $h(x) = \sum_{n=-N+1}^{N-1} a_n g(x + n)$,

where

$$a_0 = b, \ a_n + a_{-n} = 2b, \ n = 1, 2, \cdots, N - 1.$$

Then g and h generate dual frames $\{E_{mb}T_ng\}_{m,n\in\mathbb{Z}}$ and $\{E_{mb}T_nh\}_{m,n\in\mathbb{Z}}$. The conditions are satisfied for all B-splines, i.e., the functions B_N where

$$B_1 := \chi_{[0,1]}, \ B_{N+1}(x) := B_N * B_1(x) = \int_0^1 B_N(x-t) \, dt.$$

Candidates for g - the B-splines

Figure: The B-splines B_2, B_3 and some dual windows

Gabor frames - from $L^2(\mathbb{R})$ to \mathbb{C}^L

- Gabor analysis deals with frames $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ for $L^2(\mathbb{R})$.
- For concrete implementations a finite-dimensional model is needed.
- Work initiated by Janssen, 1995: certain Gabor frame for L²(ℝ) can be transferred into frames for l²(ℤ) by sampling.
- Søndergaard, Kaiblinger, 2005: certain Gabor frames for ℓ²(ℤ) can be turned into Gabor frames for ℂ^L by periodization.

$$L^{2}(\mathbb{R}) \xrightarrow{\text{sampling}} \ell^{2}(\mathbb{Z})$$

$$\downarrow \text{periodization} \qquad \downarrow$$

$$L^{2}(0,L) \longrightarrow \mathbb{C}^{L}$$

Gabor frames - from $L^2(\mathbb{R})$ to $\ell^2(\mathbb{Z})$

For $g \in \ell^2(\mathbb{Z})$, write the *j*th coordinate as g(j). Thus,

$$g = (\ldots, g(-1), g(0), g(1), \ldots).$$

Definition: Gabor systems in $\ell^2(\mathbb{Z})$:

• Given $n \in \mathbb{Z}$ and $g \in \ell^2(\mathbb{Z})$, let $T_n g$ be the sequence in $\ell^2(\mathbb{Z})$ whose *j*th coordinate is

$$T_ng(j)=g(j-n).$$

Given M ∈ N and m ∈ {0, 1, ..., M − 1}, define the action of the modulation operator E_{m/M} on g ∈ ℓ²(Z) by

$$E_{m/M}g(j) := e^{2\pi i m j/M}g(j).$$

The family of sequences {E_{m/M}T_{nN}g}_{n∈ℤ,m=0,...,M-1} is called the discrete Gabor system generated by the sequence g ∈ l²(ℤ) and with modulation parameter 1/M and translation parameter N; specifically,

$$E_{m/M}T_{nN}g(j) = e^{2\pi i j m/M}g(j-nN)$$

(DTU)

Talk, Bremen, 2015

Gabor frames - from $L^2(\mathbb{R})$ to $\ell^2(\mathbb{Z})$

Given a continuous function $f \in L^2(\mathbb{R})$, define the discrete sequence f^D by

$$f^D := \{f(j)\}_{j \in \mathbb{Z}}.$$

Theorem: Let $M, N \in \mathbb{N}$ be given, and assume that

- (i) g and h are two functions, belonging to either C_c(ℝ) or the Feichtinger algebra S₀;
- (i) The Gabor systems $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ and $\{E_{m/M}T_{nN}h\}_{m,n\in\mathbb{Z}}$ are dual frames for $L^2(\mathbb{R})$.

Then the discrete Gabor systems $\{E_{m/M}T_{nN}g^D\}_{n\in\mathbb{Z},m=0,\ldots,M-1}$ and $\{E_{m/M}T_{nN}h^D\}_{n\in\mathbb{Z},m=0,\ldots,M-1}$ are dual frames for $\ell^2(\mathbb{Z})$; in the case where $g, h \in C_c(\mathbb{R})$, these sequences are finite.

イロト イポト イヨト イヨト 二日

Gabor frames - from $L^2(\mathbb{R})$ to $\ell^2(\mathbb{Z})$

Given a continuous function $f \in L^2(\mathbb{R})$, define the discrete sequence f^D by

$$f^D := \{f(j)\}_{j \in \mathbb{Z}}.$$

Theorem: Let $M, N \in \mathbb{N}$ be given, and assume that

- (i) g and h are two functions, belonging to either C_c(ℝ) or the Feichtinger algebra S₀;
- (i) The Gabor systems $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ and $\{E_{m/M}T_{nN}h\}_{m,n\in\mathbb{Z}}$ are dual frames for $L^2(\mathbb{R})$.

Then the discrete Gabor systems $\{E_{m/M}T_{nN}g^D\}_{n\in\mathbb{Z},m=0,\ldots,M-1}$ and $\{E_{m/M}T_{nN}h^D\}_{n\in\mathbb{Z},m=0,\ldots,M-1}$ are dual frames for $\ell^2(\mathbb{Z})$; in the case where $g, h \in C_c(\mathbb{R})$, these sequences are finite. This applies to all B-splines $B_N, N \geq 2$.

イロト イポト イヨト イヨト 二日

Gabor frames - from $L^2(\mathbb{R})$ to $L^2(0, L)$

Definition: Gabor systems on $L^2(0, L)$: Let $L \in \mathbb{N}$.

- Consider $L^2(0, L)$ as a space of *L*-periodic functions.
- For $a \in \mathbb{R}$, define the translation operator on $L^2(0, L)$ by

$$T_a: L^2(0,L) \to L^2(0,L), \ T_a f(x) = f(x-a).$$

- The modulation operator on $L^2(0,L)$ is for $b \in L^{-1}\mathbb{Z}$ defined by $E_b: L^2(0,L) \to L^2(0,L), E_b f(x) = e^{2\pi i b x} f(x).$
- Fix L ∈ N, choose b ∈ L⁻¹N and a ∈ N such that N := L/a ∈ N. The corresponding *Gabor system* in L²(0, L) and generated by a function g ∈ L²(0, L) is defined by

$$\{E_{mb}T_{na}g\}_{m\in\mathbb{Z},n=0,\ldots,N-1}:=\{e^{2\pi ibx}g(x-na)\}_{m\in\mathbb{Z},n=0,\ldots,N-1}.$$

• The periodization operator \mathcal{P}_L on $L^2(\mathbb{R})$ is formally defined by

$$\mathcal{P}_L f(x) := \sum_{k \in \mathbb{Z}} f(x + kL).$$

Gabor frames - from $L^2(\mathbb{R})$ to $L^2(0, L)$

Theorem: Let $\ell, M, N \in \mathbb{N}$. Then the following holds:

- (i) If $g \in S_0$ and $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ is a frame for $L^2(\mathbb{R})$ with bounds A, B, then the periodized Gabor system $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g\}_{n\in\mathbb{Z},m=0,\ldots,M\ell-1}$ is a frame for $L^2(0, NM\ell)$ with bounds A, B.
- (ii) Let $g, h \in S_0$. If $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ and $\{E_{m/M}T_{nN}h\}_{m,n\in\mathbb{Z}}$ are dual frames for $L^2(\mathbb{R})$, then the periodized Gabor systems $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g\}_{n\in\mathbb{Z},m=0,\ldots,M\ell-1}$ and $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g\}_{n\in\mathbb{Z},m=0,\ldots,M\ell-1}$ are dual frames for $L^2(0, NM\ell)$.

Gabor frames - from $L^2(\mathbb{R})$ to $L^2(0,L)$

Theorem: Let $\ell, M, N \in \mathbb{N}$. Then the following holds:

- (i) If $g \in S_0$ and $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ is a frame for $L^2(\mathbb{R})$ with bounds A, B, then the periodized Gabor system $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g\}_{n\in\mathbb{Z},m=0,\ldots,M\ell-1}$ is a frame for $L^2(0, NM\ell)$ with bounds A, B.
- (ii) Let $g, h \in S_0$. If $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ and $\{E_{m/M}T_{nN}h\}_{m,n\in\mathbb{Z}}$ are dual frames for $L^2(\mathbb{R})$, then the periodized Gabor systems $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g\}_{n\in\mathbb{Z},m=0,\ldots,M\ell-1}$ and $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g\}_{n\in\mathbb{Z},m=0,\ldots,M\ell-1}$ are dual frames for $L^2(0, NM\ell)$.

This applies to all B-splines B_N , $N \ge 2$.

Gabor frames - from $L^2(\mathbb{R})$ to \mathbb{C}^L

Definition: Given any $L \in \mathbb{N}$, let $M, N \in \mathbb{N}$ and assume that $M' := L/M \in \mathbb{N}$ and $N' := L/N \in \mathbb{N}$. Given a sequence $g \in \mathbb{C}^L$, define the associated Gabor system on \mathbb{C}^L by

$$\{E_{m/M}T_{nN}g\}_{m=0,...,N-1;n=0,...,N'-1}$$

= $\{e^{2\pi i n(\cdot)/M}g(\cdot - nN)\}_{m=0,...,M-1;n=0,...,N'-1}$

Specifically, $E_{m/M}T_{nN}g$ is the sequence in \mathbb{C}^L whose *j*th coordinate is

$$E_{m/M}T_{nN}g(j)=e^{2\pi i n j/M}g(j-nN).$$

Note that the Gabor system consists of MN' vectors in \mathbb{C}^L .

Gabor frames - from $L^2(\mathbb{R})$ to \mathbb{C}^L

Theorem Let $N, M, \ell \in \mathbb{N}$ be given. Then the following holds:

- (i) If $g \in S_0$ and the Gabor system $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ is a frame for $L^2(\mathbb{R})$ with bounds A, B, then the discrete Gabor system $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g^D\}_{m=0,...,M-1,n=0,...,M\ell-1}$ is a frame for $\mathbb{C}^{NM\ell}$ with bounds A, B.
- (ii) If $g, h \in S_0$ and the Gabor systems $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ and $\{E_{m/M}T_{nN}g\}_{m,n\in\mathbb{Z}}$ are dual frames for $L^2(\mathbb{R})$, then the discrete Gabor systems $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g^D\}_{m=0,...,M-1,n=0,...,M\ell-1}$ and $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g^D\}_{m=0,...,M-1,n=0,...,M\ell-1}$ are dual frames for $\mathbb{C}^{NM\ell}$.

Properties of the finite frame $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g^D\}$

The constructed frame $\{E_{m/M}T_{nN}\mathcal{P}_{NM\ell}g^D\}_{m=0,...,M-1,n=0,...,M\ell-1}$ for $\mathbb{C}^{NM\ell}$ has several of the attractive properties from the "finite frame wish list:"

- The elements have constant norm;
- The condition number is bounded by the condition number of the given frame {*E_{m/M}T_{nN}g*}_{m,n∈ℤ} in *L*²(ℝ);
- Explicit versions of the results appear by applications to the B-splines $B_N, N \ge 2;$

A Gabor system {*E_{m/M}T_{nN}g*}_{m=0,...,M-1;n=0,...,N'-1} in ℂ^L is known to have full spark for a.e. *g* ∈ ℂ^L (proved for *L* prime by Lawrence, Pfander, and Walnut (2005), and in full generality by Malikiosis (2013).

- A Gabor system {*E_{m/M}T_{nN}g*}_{m=0,...,M-1;n=0,...,N'-1} in ℂ^L is known to have full spark for a.e. *g* ∈ ℂ^L (proved for *L* prime by Lawrence, Pfander, and Walnut (2005), and in full generality by Malikiosis (2013).
- Question: Do the Gabor systems $\{E_{m/M}T_{nNg}\}_{m=0,...,M-1;n=0,...,N'-1}$ constructed via sampling and periodization have full spark? E.g., if the B-splines $B_N, N \ge 2$, are used as windows?

- A Gabor system {*E_{m/M}T_{nN}g*}_{m=0,...,M-1;n=0,...,N'-1} in ℂ^L is known to have full spark for a.e. *g* ∈ ℂ^L (proved for *L* prime by Lawrence, Pfander, and Walnut (2005), and in full generality by Malikiosis (2013).
- Question: Do the Gabor systems $\{E_{m/M}T_{nNg}\}_{m=0,...,M-1;n=0,...,N'-1}$ constructed via sampling and periodization have full spark? E.g., if the B-splines $B_N, N \ge 2$, are used as windows?
- Equiangular tight Gabor frames are considered by Fickus (2009).

- A Gabor system {E_{m/M}T_{nN}g}_{m=0,...,M-1;n=0,...,N'-1} in C^L is known to have full spark for a.e. g ∈ C^L (proved for L prime by Lawrence, Pfander, and Walnut (2005), and in full generality by Malikiosis (2013).
- Question: Do the Gabor systems $\{E_{m/M}T_{nNg}\}_{m=0,...,M-1;n=0,...,N'-1}$ constructed via sampling and periodization have full spark? E.g., if the B-splines $B_N, N \ge 2$, are used as windows?
- Equiangular tight Gabor frames are considered by Fickus (2009).
- Question: Are (some of) the Gabor systems $\{E_{m/M}T_{nN}g\}_{m=0,...,M-1;n=0,...,N'-1}$ constructed via sampling and periodization equiangular? E.g., if the B-splines $B_N, N \ge 2$, are used as windows?

イロト イポト イヨト イヨト 一日

Final remarks

- The similarity between the definitions and properties of the Gabor systems on L²(ℝ), ℓ²(ℤ), L²(0, L), and ℂ^L is not a coincidence: the sets ℝ, ℤ, [0, L[and ℤ_L can all be regarded as locally compact abelian groups, and the general theory for Gabor systems on LCA groups applies.
- Letting ℓ → ∞ yields Gabor systems in high-dimensional sequence spaces and a method for approximation of the inverse frame operator.
- Søndergaard has implementet the LTFAT Matlab toolbox, which allows to perform finite-dimensional frame calculations (e.g., computation of the dual frame).

イロト イロト イヨト イヨト

An alternative way to obtain finite "Gabor systems"

Theorem Suppose that ab < 1 and that $\{E_{mb}T_{na}g\}_{m,n\in\mathbb{Z}}$ is a frame for $L^2(\mathbb{R})$. For $N \in \mathbb{N}$, let \mathcal{E}_N denote a lower frame bound for the frame sequence $\{E_{mb}T_{na}g\}_{|m|,|n|\leq N}$. Then

$$\mathcal{E}_N \to 0$$
 as $N \to \infty$.

Thus, the "cut-off" procedure is not suitable for obtaining well-conditioned finite-dimensional systems!

A conjecture by Heil, Ramanathan, and Topiwala (1995)

The HRT-Conjecture: Given any finite collection of distinct points $\{(\mu_k, \lambda_k)\}_{k \in \mathcal{F}}$ in \mathbb{R}^2 and a function $g \neq 0$, the Gabor system

$$\{e^{2\pi i\lambda_k x}g(x-\mu_k)\}_{k\in\mathcal{F}}$$

is linearly independent.

A conjecture by Heil, Ramanathan, and Topiwala (1995)

The HRT-Conjecture: Given any finite collection of distinct points $\{(\mu_k, \lambda_k)\}_{k \in \mathcal{F}}$ in \mathbb{R}^2 and a function $g \neq 0$, the Gabor system

$$\{e^{2\pi i\lambda_k x}g(x-\mu_k)\}_{k\in\mathcal{F}}$$

is linearly independent.

The conjecture has been confirmed for regular Gabor frames $\{E_{mb}T_{nag}\}_{m,n\in\mathbb{Z}}$ and some irregular Gabor systems, but the general case is still open.
Dedicated to John Benedetto and Hans Feichtinger

イロト イロト イヨト イヨト

- Alexeev, B., C., and Mixon, D. G.: *Full spark frames*. J. Fourier Anal. Appl. **18** no. 6 (2012), 1167–1194.
- Benedetto, J., and Fickus, M.: *Finite normalized tight frames*. Adv. Comp. Math. **18** (2003), no. 2-4, 357–385.
- Benedetto, J., Powell A., and Yilmaz, Ö.: *Sigma-Delta quantization and finite frames. IEEE. Trans. Inform. Theory*, **52** (2006), 1990–2005.
- Blum, J., Lammers, M., Powell, A. M., and Yilmaz, Ö.: *Sobolev duals in frame theory and sigma-delta quantization.* J. Fourier Anal. Appl. **16** (2010), 365–381.
- Bodmann, B. G., Casazza, P. G.; Kutyniok, G.: *A quantitative notion of redundancy for finite frames*. Appl. Comp. Harm. Anal. **30** (2011), no. 3, 348–362.
- Casazza, P.G. and Kovačević, J.: *Equal-norm tight frames with erasures*. Adv. Comput. Math. 18 (2003), 387–430.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Casazza, P. G. and Kutyniok, G. (eds): *Finite frames. Theory and applications.* Birkhäuser 2012.
- Casazza, P.G. and Leon, M.: *Existence and construction of finite tight frames.* J. Concr. Appl. Math. **4** (2006), no. 3, 277–289.
- Casazza, P. G., and Leonhard, N.: *Classes of finite equal norm Parseval frames*, Contemp. Math. **451** (2008), 11–31.
- Christensen, O.: *Pairs of dual Gabor frames with compact support and desired frequency localization*. Appl. Comp. Harm. Anal. **20** (2006), 403–410.
- Christensen, O. and Kim, R. Y.: *Pairs of explicitly given dual Gabor* frames in $L^2(\mathbb{R}^d)$. J. Fourier Anal. Appl. **12** vol. 3 (2006), 243–255.
- Christensen, O., Powell, A. M. and Xiao, X. C.: *A note on finite dual frame pairs*. Proc. Amer. Math. Soc. **140** no. 11 (2012), 3921–3930.
- Fickus, M.: Maximally equiangular frames and Gauss sums. J. Fourier Anal. Appl. 15 no. 3 (2009), 413–427.

- Janssen, A.J.E.M.: *From continuous to discrete Weyl-Heisenberg frames through sampling.* J. Fourier Anal. Appl. **3** no. 5 (1997), 583–596.
- Kaiblinger, N.: *Approximation of the Fourier transform and the dual Gabor window.* J. Fourier Anal. Appl. **11** no.1 (2005), 25–42.
- Lawrence, J., Pfander, G. E., and Walnut, D.: *Linear independence of Gabor systems in finite dimensional vector spaces*. J. Fourier Anal. Appl. 11 no. 6 (2005), 715–726.
- Li, S.: *On general frame decompositions*. Numer. Funct. Anal. and Optimiz. **16** no. 9 & 10 (1995), 1181–1191.
- Malikiosis, R.-D.: *A note on Gabor frames in finite dimensions*. Appl. Comp. Harm. Anal. **38** (2015), 318–330.
- Strohmer, T.: *A note on equiangular tight frames*. Lin. Alg. Appl. **429** no. 1 (2008), 326–330.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Strohmer, T. and Heath, R.: *Grassmannian frames with applications to coding and communication*. Appl. Comp. Harmon. Anal. **14** (2003), 257-275.
- Sustik, M. A., Tropp, J. A., Dhillon, I. S., and Heath, R. W., Jr.: *On the existence of equiangular tight frames.* Lin. Alg. Appl. **426** no. 2-3 (2007), 619–635.
- Søndergaard, P.: *Gabor frames by sampling and periodization*. Adv. Comput. Math. **27** (2007), no. 4, 355–373.
- Søndergaard, P., Torresani, B., and Balazs, P.: *The linear time frequency analysis toolbox.* Int. J. Wavelets Multiresolut. Inf. Process. **10** (2012), no. 4.
- Xia, P., Zhou, S., and Giannakis, S. B.: *Achieving the Welch Bound with difference sets.* IEEE Trans. Inform. Theory **51** no. 5 (2005), 1900–1907.
 - Zimmermann, G.: Normalized tight frames in finite dimensions. In
 "Recent progress in multivariate approximation", 249–252. (eds. Jetter, K., Haußmann, W., Reimer, M.). Birkhäuser, Boston, 2001.